Catálogo de publicaciones - libros

Compartir en
redes sociales


Costs of Air Pollution Control: Analyses of Emission Control Options for Ozone Abatement Strategies

Stefan Reis

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-43934-9

ISBN electrónico

978-3-540-26418-7

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Tabla de contenidos

Introduction

Stefan Reis

Seawater desalination is one of the most promising fields for the application of solar thermal energy due to the usual coincidence, in many places in the world, of water scarcity, seawater availability and good levels of solar radiation. During the 90s the Plataforma Solar de Almería (PSA) carried out a research project that successfully demonstrated the technical feasibility of solar seawater desalination using parabolic-trough solar collectors coupled with a conventional multi-effect distillation unit. In spite of significant achievements in the process energy efficiency, by the development and implementation of a double-effect absorption heat pump, the technology could not compete in cost reduction with conventional thermal distillation or reverse osmosis processes. In 2002, the R&D European Project AQUASOL was initiated at the PSA in order to improve the existing solar thermal desalination technology. This paper describes all these experiences along with a detailed description of the AQUASOL desalination system, currently under evaluation at the PSA.

Pp. 1-4

Air Pollution in Europe

Stefan Reis

Seawater desalination is one of the most promising fields for the application of solar thermal energy due to the usual coincidence, in many places in the world, of water scarcity, seawater availability and good levels of solar radiation. During the 90s the Plataforma Solar de Almería (PSA) carried out a research project that successfully demonstrated the technical feasibility of solar seawater desalination using parabolic-trough solar collectors coupled with a conventional multi-effect distillation unit. In spite of significant achievements in the process energy efficiency, by the development and implementation of a double-effect absorption heat pump, the technology could not compete in cost reduction with conventional thermal distillation or reverse osmosis processes. In 2002, the R&D European Project AQUASOL was initiated at the PSA in order to improve the existing solar thermal desalination technology. This paper describes all these experiences along with a detailed description of the AQUASOL desalination system, currently under evaluation at the PSA.

Pp. 5-33

Emissions, Sources and Abatement Costs

Stefan Reis

Seawater desalination is one of the most promising fields for the application of solar thermal energy due to the usual coincidence, in many places in the world, of water scarcity, seawater availability and good levels of solar radiation. During the 90s the Plataforma Solar de Almería (PSA) carried out a research project that successfully demonstrated the technical feasibility of solar seawater desalination using parabolic-trough solar collectors coupled with a conventional multi-effect distillation unit. In spite of significant achievements in the process energy efficiency, by the development and implementation of a double-effect absorption heat pump, the technology could not compete in cost reduction with conventional thermal distillation or reverse osmosis processes. In 2002, the R&D European Project AQUASOL was initiated at the PSA in order to improve the existing solar thermal desalination technology. This paper describes all these experiences along with a detailed description of the AQUASOL desalination system, currently under evaluation at the PSA.

Pp. 35-79

Optimising Ozone Abatement Strategies

Stefan Reis

Seawater desalination is one of the most promising fields for the application of solar thermal energy due to the usual coincidence, in many places in the world, of water scarcity, seawater availability and good levels of solar radiation. During the 90s the Plataforma Solar de Almería (PSA) carried out a research project that successfully demonstrated the technical feasibility of solar seawater desalination using parabolic-trough solar collectors coupled with a conventional multi-effect distillation unit. In spite of significant achievements in the process energy efficiency, by the development and implementation of a double-effect absorption heat pump, the technology could not compete in cost reduction with conventional thermal distillation or reverse osmosis processes. In 2002, the R&D European Project AQUASOL was initiated at the PSA in order to improve the existing solar thermal desalination technology. This paper describes all these experiences along with a detailed description of the AQUASOL desalination system, currently under evaluation at the PSA.

Pp. 81-117

Modelling Results for Tropospheric Ozone

Stefan Reis

Seawater desalination is one of the most promising fields for the application of solar thermal energy due to the usual coincidence, in many places in the world, of water scarcity, seawater availability and good levels of solar radiation. During the 90s the Plataforma Solar de Almería (PSA) carried out a research project that successfully demonstrated the technical feasibility of solar seawater desalination using parabolic-trough solar collectors coupled with a conventional multi-effect distillation unit. In spite of significant achievements in the process energy efficiency, by the development and implementation of a double-effect absorption heat pump, the technology could not compete in cost reduction with conventional thermal distillation or reverse osmosis processes. In 2002, the R&D European Project AQUASOL was initiated at the PSA in order to improve the existing solar thermal desalination technology. This paper describes all these experiences along with a detailed description of the AQUASOL desalination system, currently under evaluation at the PSA.

Pp. 119-149

Evaluation of Results

Stefan Reis

Seawater desalination is one of the most promising fields for the application of solar thermal energy due to the usual coincidence, in many places in the world, of water scarcity, seawater availability and good levels of solar radiation. During the 90s the Plataforma Solar de Almería (PSA) carried out a research project that successfully demonstrated the technical feasibility of solar seawater desalination using parabolic-trough solar collectors coupled with a conventional multi-effect distillation unit. In spite of significant achievements in the process energy efficiency, by the development and implementation of a double-effect absorption heat pump, the technology could not compete in cost reduction with conventional thermal distillation or reverse osmosis processes. In 2002, the R&D European Project AQUASOL was initiated at the PSA in order to improve the existing solar thermal desalination technology. This paper describes all these experiences along with a detailed description of the AQUASOL desalination system, currently under evaluation at the PSA.

Pp. 151-162

Conclusions and Outlook

Stefan Reis

Seawater desalination is one of the most promising fields for the application of solar thermal energy due to the usual coincidence, in many places in the world, of water scarcity, seawater availability and good levels of solar radiation. During the 90s the Plataforma Solar de Almería (PSA) carried out a research project that successfully demonstrated the technical feasibility of solar seawater desalination using parabolic-trough solar collectors coupled with a conventional multi-effect distillation unit. In spite of significant achievements in the process energy efficiency, by the development and implementation of a double-effect absorption heat pump, the technology could not compete in cost reduction with conventional thermal distillation or reverse osmosis processes. In 2002, the R&D European Project AQUASOL was initiated at the PSA in order to improve the existing solar thermal desalination technology. This paper describes all these experiences along with a detailed description of the AQUASOL desalination system, currently under evaluation at the PSA.

Pp. 163-171