Catálogo de publicaciones - libros
Comparative environmental politics
Jerry McBeath Jonathan Rosenberg
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-4020-4762-6
ISBN electrónico
978-1-4020-4763-3
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer 2006
Cobertura temática
Tabla de contenidos
Introduction
Jerry McBeath; Jonathan Rosenberg
Research in the domain of biologically inspired walking machines has been ongoing for over 20 years [59, 166, 190, 199, 207]. Most of it has focused on the construction of such machines [34, 47, 216, 223], on a dynamic gait control [43, 117, 201] and on the generation of an advanced locomotion control [30, 56, 104, 120], for instance on rough terrain [5, 66, 102, 180, 192]. In general, these walking machines were solely designed for the purpose of motion without responding to environmental stimuli. However, from this research area, only a few works have presented physical walking machines reacting to an environmental stimulus using different approaches [6, 36, 72, 95]. On the one hand, this shows that less attention has been paid to walking machines performing reactive behaviors. On the other hand, such complex systems can serve as a methodology for the study of embodied systems consisting of sensors and actuators for explicit agent-environment interactions.
Pp. 1-19
State-society relations
Jerry McBeath; Jonathan Rosenberg
Research in the domain of biologically inspired walking machines has been ongoing for over 20 years [59, 166, 190, 199, 207]. Most of it has focused on the construction of such machines [34, 47, 216, 223], on a dynamic gait control [43, 117, 201] and on the generation of an advanced locomotion control [30, 56, 104, 120], for instance on rough terrain [5, 66, 102, 180, 192]. In general, these walking machines were solely designed for the purpose of motion without responding to environmental stimuli. However, from this research area, only a few works have presented physical walking machines reacting to an environmental stimulus using different approaches [6, 36, 72, 95]. On the one hand, this shows that less attention has been paid to walking machines performing reactive behaviors. On the other hand, such complex systems can serve as a methodology for the study of embodied systems consisting of sensors and actuators for explicit agent-environment interactions.
Pp. 21-55
Political processes and organizations
Jerry McBeath; Jonathan Rosenberg
Research in the domain of biologically inspired walking machines has been ongoing for over 20 years [59, 166, 190, 199, 207]. Most of it has focused on the construction of such machines [34, 47, 216, 223], on a dynamic gait control [43, 117, 201] and on the generation of an advanced locomotion control [30, 56, 104, 120], for instance on rough terrain [5, 66, 102, 180, 192]. In general, these walking machines were solely designed for the purpose of motion without responding to environmental stimuli. However, from this research area, only a few works have presented physical walking machines reacting to an environmental stimulus using different approaches [6, 36, 72, 95]. On the one hand, this shows that less attention has been paid to walking machines performing reactive behaviors. On the other hand, such complex systems can serve as a methodology for the study of embodied systems consisting of sensors and actuators for explicit agent-environment interactions.
Pp. 57-88
Political institutions and the environment
Jerry McBeath; Jonathan Rosenberg
Research in the domain of biologically inspired walking machines has been ongoing for over 20 years [59, 166, 190, 199, 207]. Most of it has focused on the construction of such machines [34, 47, 216, 223], on a dynamic gait control [43, 117, 201] and on the generation of an advanced locomotion control [30, 56, 104, 120], for instance on rough terrain [5, 66, 102, 180, 192]. In general, these walking machines were solely designed for the purpose of motion without responding to environmental stimuli. However, from this research area, only a few works have presented physical walking machines reacting to an environmental stimulus using different approaches [6, 36, 72, 95]. On the one hand, this shows that less attention has been paid to walking machines performing reactive behaviors. On the other hand, such complex systems can serve as a methodology for the study of embodied systems consisting of sensors and actuators for explicit agent-environment interactions.
Pp. 89-114
National capacity to protect the environment
Jerry McBeath; Jonathan Rosenberg
Research in the domain of biologically inspired walking machines has been ongoing for over 20 years [59, 166, 190, 199, 207]. Most of it has focused on the construction of such machines [34, 47, 216, 223], on a dynamic gait control [43, 117, 201] and on the generation of an advanced locomotion control [30, 56, 104, 120], for instance on rough terrain [5, 66, 102, 180, 192]. In general, these walking machines were solely designed for the purpose of motion without responding to environmental stimuli. However, from this research area, only a few works have presented physical walking machines reacting to an environmental stimulus using different approaches [6, 36, 72, 95]. On the one hand, this shows that less attention has been paid to walking machines performing reactive behaviors. On the other hand, such complex systems can serve as a methodology for the study of embodied systems consisting of sensors and actuators for explicit agent-environment interactions.
Pp. 115-138
National responses to global environmental problems
Jerry McBeath; Jonathan Rosenberg
Research in the domain of biologically inspired walking machines has been ongoing for over 20 years [59, 166, 190, 199, 207]. Most of it has focused on the construction of such machines [34, 47, 216, 223], on a dynamic gait control [43, 117, 201] and on the generation of an advanced locomotion control [30, 56, 104, 120], for instance on rough terrain [5, 66, 102, 180, 192]. In general, these walking machines were solely designed for the purpose of motion without responding to environmental stimuli. However, from this research area, only a few works have presented physical walking machines reacting to an environmental stimulus using different approaches [6, 36, 72, 95]. On the one hand, this shows that less attention has been paid to walking machines performing reactive behaviors. On the other hand, such complex systems can serve as a methodology for the study of embodied systems consisting of sensors and actuators for explicit agent-environment interactions.
Pp. 139-171
Summary and conclusions
Jerry McBeath; Jonathan Rosenberg
Research in the domain of biologically inspired walking machines has been ongoing for over 20 years [59, 166, 190, 199, 207]. Most of it has focused on the construction of such machines [34, 47, 216, 223], on a dynamic gait control [43, 117, 201] and on the generation of an advanced locomotion control [30, 56, 104, 120], for instance on rough terrain [5, 66, 102, 180, 192]. In general, these walking machines were solely designed for the purpose of motion without responding to environmental stimuli. However, from this research area, only a few works have presented physical walking machines reacting to an environmental stimulus using different approaches [6, 36, 72, 95]. On the one hand, this shows that less attention has been paid to walking machines performing reactive behaviors. On the other hand, such complex systems can serve as a methodology for the study of embodied systems consisting of sensors and actuators for explicit agent-environment interactions.
Pp. 173-182