Catálogo de publicaciones - libros
Urban Forest Acoustics
Voichita Bucur
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-30783-9
ISBN electrónico
978-3-540-30789-1
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2006
Cobertura temática
Tabla de contenidos
Introduction
Voichita Bucur
Gaussian stochastic processes are widely used in practice as models for geostatistical data. These models rarely have any physical justification. Rather, they are used as convenient empirical models which can capture a wide range of spatial behaviour according to the specification of their correlation structure. Historically, one very good reason for concentrating on Gaussian models was that they are uniquely tractable as models for dependent data. With the increasing use of computationally intensive methods, and in particular of simulation-based methods of inference, the analytic tractability of Gaussian models is becoming a less compelling reason to use them. Nevertheless, it is still convenient to work within a standard model class in routine applications. The scope of the Gaussian model class can be extended by using a transformation of the original response variable, and with this extra flexibility the model often provides a good empirical fit to data. Also, within the specific context of geostatistics, the Gaussian assumption is the model-based counterpart of some widely used geostatistical prediction methods, including simple, ordinary and universal kriging (Journel and Huijbregts, 1978; Chilès and Delfiner, 1999). We shall use the Gaussian model initially as a model in its own right for geostatistical data with a continuously varying response, and later as an important component of a hierarchically specified generalised linear model for geostatistical data with a discrete response variable, as previously discussed in Section 1.4.
Pp. 1-5
Noise in Urban Forest
Voichita Bucur
The design of a comfortable environment must pay attention to the “sound-scape” which should complete the “landscape” design. The meanings of sound-scape are social, historical, cultural and environmental. A positive impression on the urban soundscape is produced by large vegetation areas, belts of trees, public gardens and parks.
In urban residential areas, the disposition of trees around the houses should be made for maximum noise reduction, together with an improvement in aesthetics and air quality. In residential suburban areas, discomfort is produced by highway systems. In this case, noise reduction can be achieved by creating tree belts and noise barriers.
Pp. 7-25
Tree Characteristics and Acoustic Sensors
Voichita Bucur
The design of a comfortable environment must pay attention to the “sound-scape” which should complete the “landscape” design. The meanings of sound-scape are social, historical, cultural and environmental. A positive impression on the urban soundscape is produced by large vegetation areas, belts of trees, public gardens and parks.
In urban residential areas, the disposition of trees around the houses should be made for maximum noise reduction, together with an improvement in aesthetics and air quality. In residential suburban areas, discomfort is produced by highway systems. In this case, noise reduction can be achieved by creating tree belts and noise barriers.
Pp. 27-42
Noise Attenuation with Plant Material
Voichita Bucur
Gaussian stochastic processes are widely used in practice as models for geostatistical data. These models rarely have any physical justification. Rather, they are used as convenient empirical models which can capture a wide range of spatial behaviour according to the specification of their correlation structure. Historically, one very good reason for concentrating on Gaussian models was that they are uniquely tractable as models for dependent data. With the increasing use of computationally intensive methods, and in particular of simulation-based methods of inference, the analytic tractability of Gaussian models is becoming a less compelling reason to use them. Nevertheless, it is still convenient to work within a standard model class in routine applications. The scope of the Gaussian model class can be extended by using a transformation of the original response variable, and with this extra flexibility the model often provides a good empirical fit to data. Also, within the specific context of geostatistics, the Gaussian assumption is the model-based counterpart of some widely used geostatistical prediction methods, including simple, ordinary and universal kriging (Journel and Huijbregts, 1978; Chilès and Delfiner, 1999). We shall use the Gaussian model initially as a model in its own right for geostatistical data with a continuously varying response, and later as an important component of a hierarchically specified generalised linear model for geostatistical data with a discrete response variable, as previously discussed in Section 1.4.
Pp. 43-110
Traffic Noise Abatement
Voichita Bucur
The design of a comfortable environment must pay attention to the “sound-scape” which should complete the “landscape” design. The meanings of sound-scape are social, historical, cultural and environmental. A positive impression on the urban soundscape is produced by large vegetation areas, belts of trees, public gardens and parks.
In urban residential areas, the disposition of trees around the houses should be made for maximum noise reduction, together with an improvement in aesthetics and air quality. In residential suburban areas, discomfort is produced by highway systems. In this case, noise reduction can be achieved by creating tree belts and noise barriers.
Pp. 111-128
Noise Abatement and Dwellings
Voichita Bucur
The design of a comfortable environment must pay attention to the “sound-scape” which should complete the “landscape” design. The meanings of sound-scape are social, historical, cultural and environmental. A positive impression on the urban soundscape is produced by large vegetation areas, belts of trees, public gardens and parks.
In urban residential areas, the disposition of trees around the houses should be made for maximum noise reduction, together with an improvement in aesthetics and air quality. In residential suburban areas, discomfort is produced by highway systems. In this case, noise reduction can be achieved by creating tree belts and noise barriers.
Pp. 129-138
Noise, Birds and Insects in Urban Forest Environment
Voichita Bucur
Gaussian stochastic processes are widely used in practice as models for geostatistical data. These models rarely have any physical justification. Rather, they are used as convenient empirical models which can capture a wide range of spatial behaviour according to the specification of their correlation structure. Historically, one very good reason for concentrating on Gaussian models was that they are uniquely tractable as models for dependent data. With the increasing use of computationally intensive methods, and in particular of simulation-based methods of inference, the analytic tractability of Gaussian models is becoming a less compelling reason to use them. Nevertheless, it is still convenient to work within a standard model class in routine applications. The scope of the Gaussian model class can be extended by using a transformation of the original response variable, and with this extra flexibility the model often provides a good empirical fit to data. Also, within the specific context of geostatistics, the Gaussian assumption is the model-based counterpart of some widely used geostatistical prediction methods, including simple, ordinary and universal kriging (Journel and Huijbregts, 1978; Chilès and Delfiner, 1999). We shall use the Gaussian model initially as a model in its own right for geostatistical data with a continuously varying response, and later as an important component of a hierarchically specified generalised linear model for geostatistical data with a discrete response variable, as previously discussed in Section 1.4.
Pp. 139-145
Acoustics for Fire Control in Forest
Voichita Bucur
The design of a comfortable environment must pay attention to the “sound-scape” which should complete the “landscape” design. The meanings of sound-scape are social, historical, cultural and environmental. A positive impression on the urban soundscape is produced by large vegetation areas, belts of trees, public gardens and parks.
In urban residential areas, the disposition of trees around the houses should be made for maximum noise reduction, together with an improvement in aesthetics and air quality. In residential suburban areas, discomfort is produced by highway systems. In this case, noise reduction can be achieved by creating tree belts and noise barriers.
Pp. 147-149
Economic Aspects
Voichita Bucur
Gaussian stochastic processes are widely used in practice as models for geostatistical data. These models rarely have any physical justification. Rather, they are used as convenient empirical models which can capture a wide range of spatial behaviour according to the specification of their correlation structure. Historically, one very good reason for concentrating on Gaussian models was that they are uniquely tractable as models for dependent data. With the increasing use of computationally intensive methods, and in particular of simulation-based methods of inference, the analytic tractability of Gaussian models is becoming a less compelling reason to use them. Nevertheless, it is still convenient to work within a standard model class in routine applications. The scope of the Gaussian model class can be extended by using a transformation of the original response variable, and with this extra flexibility the model often provides a good empirical fit to data. Also, within the specific context of geostatistics, the Gaussian assumption is the model-based counterpart of some widely used geostatistical prediction methods, including simple, ordinary and universal kriging (Journel and Huijbregts, 1978; Chilès and Delfiner, 1999). We shall use the Gaussian model initially as a model in its own right for geostatistical data with a continuously varying response, and later as an important component of a hierarchically specified generalised linear model for geostatistical data with a discrete response variable, as previously discussed in Section 1.4.
Pp. 151-153