Catálogo de publicaciones - libros

Compartir en
redes sociales


Constraint Theory: Multidimensional Mathematical Model Management

George J. Friedman

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Appl.Mathematics/Computational Methods of Engineering; Mathematical Modeling and Industrial Mathematics; Computational Intelligence; Mathematics of Computing; Computing Methodologies

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-387-23418-2

ISBN electrónico

978-0-387-27650-2

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag US 2005

Cobertura temática

Tabla de contenidos

Motivations

George J. Friedman

In the context of stroke therapy simulation, a method for the segmentation and reconstruction of human vasculature is presented and evaluated. Based on CTA scans, semi-automatic tools have been developed to reduce dataset noise, to segment using active contours, to extract the skeleton, to estimate the vessel radii and to reconstruct the associated surface. The robustness and accuracy of our technique are evaluated on a vascular phantom scanned in different orientations. The reconstructed surface is compared to a surface generated by marching cubes followed by decimation and smoothing. Experiments show that the proposed technique reaches a good balance in terms of smoothness, number of triangles, and distance error. The reconstructed surface is suitable for real-time simulation, interactive navigation and visualization.

Pp. 1-23

The Four-Fold Way

George J. Friedman

In the context of stroke therapy simulation, a method for the segmentation and reconstruction of human vasculature is presented and evaluated. Based on CTA scans, semi-automatic tools have been developed to reduce dataset noise, to segment using active contours, to extract the skeleton, to estimate the vessel radii and to reconstruct the associated surface. The robustness and accuracy of our technique are evaluated on a vascular phantom scanned in different orientations. The reconstructed surface is compared to a surface generated by marching cubes followed by decimation and smoothing. Experiments show that the proposed technique reaches a good balance in terms of smoothness, number of triangles, and distance error. The reconstructed surface is suitable for real-time simulation, interactive navigation and visualization.

Pp. 25-48

General Results

George J. Friedman

In the context of stroke therapy simulation, a method for the segmentation and reconstruction of human vasculature is presented and evaluated. Based on CTA scans, semi-automatic tools have been developed to reduce dataset noise, to segment using active contours, to extract the skeleton, to estimate the vessel radii and to reconstruct the associated surface. The robustness and accuracy of our technique are evaluated on a vascular phantom scanned in different orientations. The reconstructed surface is compared to a surface generated by marching cubes followed by decimation and smoothing. Experiments show that the proposed technique reaches a good balance in terms of smoothness, number of triangles, and distance error. The reconstructed surface is suitable for real-time simulation, interactive navigation and visualization.

Pp. 49-60

Regular Relations

George J. Friedman

In the context of stroke therapy simulation, a method for the segmentation and reconstruction of human vasculature is presented and evaluated. Based on CTA scans, semi-automatic tools have been developed to reduce dataset noise, to segment using active contours, to extract the skeleton, to estimate the vessel radii and to reconstruct the associated surface. The robustness and accuracy of our technique are evaluated on a vascular phantom scanned in different orientations. The reconstructed surface is compared to a surface generated by marching cubes followed by decimation and smoothing. Experiments show that the proposed technique reaches a good balance in terms of smoothness, number of triangles, and distance error. The reconstructed surface is suitable for real-time simulation, interactive navigation and visualization.

Pp. 61-110

Discrete and Interval Relations

George J. Friedman

In the context of stroke therapy simulation, a method for the segmentation and reconstruction of human vasculature is presented and evaluated. Based on CTA scans, semi-automatic tools have been developed to reduce dataset noise, to segment using active contours, to extract the skeleton, to estimate the vessel radii and to reconstruct the associated surface. The robustness and accuracy of our technique are evaluated on a vascular phantom scanned in different orientations. The reconstructed surface is compared to a surface generated by marching cubes followed by decimation and smoothing. Experiments show that the proposed technique reaches a good balance in terms of smoothness, number of triangles, and distance error. The reconstructed surface is suitable for real-time simulation, interactive navigation and visualization.

Pp. 111-127

The Logical Structure of Constraint Theory

George J. Friedman

In the context of stroke therapy simulation, a method for the segmentation and reconstruction of human vasculature is presented and evaluated. Based on CTA scans, semi-automatic tools have been developed to reduce dataset noise, to segment using active contours, to extract the skeleton, to estimate the vessel radii and to reconstruct the associated surface. The robustness and accuracy of our technique are evaluated on a vascular phantom scanned in different orientations. The reconstructed surface is compared to a surface generated by marching cubes followed by decimation and smoothing. Experiments show that the proposed technique reaches a good balance in terms of smoothness, number of triangles, and distance error. The reconstructed surface is suitable for real-time simulation, interactive navigation and visualization.

Pp. 129-135

Examples of Constraint Theory Applied to Real-World Problems

George J. Friedman

In the context of stroke therapy simulation, a method for the segmentation and reconstruction of human vasculature is presented and evaluated. Based on CTA scans, semi-automatic tools have been developed to reduce dataset noise, to segment using active contours, to extract the skeleton, to estimate the vessel radii and to reconstruct the associated surface. The robustness and accuracy of our technique are evaluated on a vascular phantom scanned in different orientations. The reconstructed surface is compared to a surface generated by marching cubes followed by decimation and smoothing. Experiments show that the proposed technique reaches a good balance in terms of smoothness, number of triangles, and distance error. The reconstructed surface is suitable for real-time simulation, interactive navigation and visualization.

Pp. 137-156

Manager and Analyst Meet Again

George J. Friedman

In the context of stroke therapy simulation, a method for the segmentation and reconstruction of human vasculature is presented and evaluated. Based on CTA scans, semi-automatic tools have been developed to reduce dataset noise, to segment using active contours, to extract the skeleton, to estimate the vessel radii and to reconstruct the associated surface. The robustness and accuracy of our technique are evaluated on a vascular phantom scanned in different orientations. The reconstructed surface is compared to a surface generated by marching cubes followed by decimation and smoothing. Experiments show that the proposed technique reaches a good balance in terms of smoothness, number of triangles, and distance error. The reconstructed surface is suitable for real-time simulation, interactive navigation and visualization.

Pp. 157-161