Catálogo de publicaciones - libros
Monetary Policy and the German Unemployment Problem in Macroeconomic Models: Theory and Evidence
Jan Gottschalk
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Macroeconomics/Monetary Economics//Financial Economics; Labor Economics
Disponibilidad
| Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
|---|---|---|---|---|
| No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-25650-2
ISBN electrónico
978-3-540-37679-8
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2005
Cobertura temática
Tabla de contenidos
Introduction
Jan Gottschalk
Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.
Pp. 1-4
Keynesian and Monetarist Views on the German Unemployment Problem
Jan Gottschalk
Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.
Pp. 5-95
The Rational Expectations Revolution
Jan Gottschalk
Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.
Pp. 96-113
Monetary Policy in the New Keynesian Model
Jan Gottschalk
Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.
Pp. 114-170
Introducing Nonlinearities into the New Keynesian Model
Jan Gottschalk
Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.
Pp. 171-203
Revisiting the Natural Rate Hypothesis
Jan Gottschalk
Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.
Pp. 204-237
Concluding Remarks
Jan Gottschalk
Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.
Pp. 238-240