Catálogo de publicaciones - libros

Compartir en
redes sociales


Singular Coverings of Toposes

Marta Bunge Jonathon Funk

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-36359-0

ISBN electrónico

978-3-540-36360-6

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2006

Cobertura temática

Tabla de contenidos

Lawvere Distributions on Toposes

Marta Bunge; Jonathon Funk

Gene therapy potentially represents one of the most important developments in modern medicine. Gene therapy, especially of cancer, has created exciting and elusive areas of therapeutic research in the past decade. In fact, the first gene therapy performed in a human was not against cancer but was performed to a 14 year old child suffering from adenosine deaminase (ADA) deficiency. In addition to cancer gene therapy there are many other diseases and disorders where gene therapy holds exciting and promising opportunities. These include amongst others gene therapy within the central nervous system and the cardiovascular system. Improvements of the efficiency and safety of gene therapy is the major goal of gene therapy development. After the death of Jesse Gelsinger, the first patient in whom death could be directly linked to the viral vector used for the treatment, ethical doubts were raised about the feasibility of gene therapy in humans. Therefore, the ability to direct gene transfer vectors to specific target cells is also a crucial task to be solved and will be important not only to achieve a therapeutic effect but also to limit potential adverse effects.

Part I - Distributions and Complete Spreads | Pp. 9-29

Complete Spread Maps of Toposes

Marta Bunge; Jonathon Funk

Gene therapy potentially represents one of the most important developments in modern medicine. Gene therapy, especially of cancer, has created exciting and elusive areas of therapeutic research in the past decade. In fact, the first gene therapy performed in a human was not against cancer but was performed to a 14 year old child suffering from adenosine deaminase (ADA) deficiency. In addition to cancer gene therapy there are many other diseases and disorders where gene therapy holds exciting and promising opportunities. These include amongst others gene therapy within the central nervous system and the cardiovascular system. Improvements of the efficiency and safety of gene therapy is the major goal of gene therapy development. After the death of Jesse Gelsinger, the first patient in whom death could be directly linked to the viral vector used for the treatment, ethical doubts were raised about the feasibility of gene therapy in humans. Therefore, the ability to direct gene transfer vectors to specific target cells is also a crucial task to be solved and will be important not only to achieve a therapeutic effect but also to limit potential adverse effects.

Part I - Distributions and Complete Spreads | Pp. 31-54

The Spread and Completeness Conditions

Marta Bunge; Jonathon Funk

Gene therapy potentially represents one of the most important developments in modern medicine. Gene therapy, especially of cancer, has created exciting and elusive areas of therapeutic research in the past decade. In fact, the first gene therapy performed in a human was not against cancer but was performed to a 14 year old child suffering from adenosine deaminase (ADA) deficiency. In addition to cancer gene therapy there are many other diseases and disorders where gene therapy holds exciting and promising opportunities. These include amongst others gene therapy within the central nervous system and the cardiovascular system. Improvements of the efficiency and safety of gene therapy is the major goal of gene therapy development. After the death of Jesse Gelsinger, the first patient in whom death could be directly linked to the viral vector used for the treatment, ethical doubts were raised about the feasibility of gene therapy in humans. Therefore, the ability to direct gene transfer vectors to specific target cells is also a crucial task to be solved and will be important not only to achieve a therapeutic effect but also to limit potential adverse effects.

Part I - Distributions and Complete Spreads | Pp. 55-76

Completion KZ-Monads

Marta Bunge; Jonathon Funk

Gene therapy potentially represents one of the most important developments in modern medicine. Gene therapy, especially of cancer, has created exciting and elusive areas of therapeutic research in the past decade. In fact, the first gene therapy performed in a human was not against cancer but was performed to a 14 year old child suffering from adenosine deaminase (ADA) deficiency. In addition to cancer gene therapy there are many other diseases and disorders where gene therapy holds exciting and promising opportunities. These include amongst others gene therapy within the central nervous system and the cardiovascular system. Improvements of the efficiency and safety of gene therapy is the major goal of gene therapy development. After the death of Jesse Gelsinger, the first patient in whom death could be directly linked to the viral vector used for the treatment, ethical doubts were raised about the feasibility of gene therapy in humans. Therefore, the ability to direct gene transfer vectors to specific target cells is also a crucial task to be solved and will be important not only to achieve a therapeutic effect but also to limit potential adverse effects.

Part II - An Axiomatic Theory of Complete Spreads | Pp. 79-97

Complete Spreads as Discrete M-fibrations

Marta Bunge; Jonathon Funk

Gene therapy potentially represents one of the most important developments in modern medicine. Gene therapy, especially of cancer, has created exciting and elusive areas of therapeutic research in the past decade. In fact, the first gene therapy performed in a human was not against cancer but was performed to a 14 year old child suffering from adenosine deaminase (ADA) deficiency. In addition to cancer gene therapy there are many other diseases and disorders where gene therapy holds exciting and promising opportunities. These include amongst others gene therapy within the central nervous system and the cardiovascular system. Improvements of the efficiency and safety of gene therapy is the major goal of gene therapy development. After the death of Jesse Gelsinger, the first patient in whom death could be directly linked to the viral vector used for the treatment, ethical doubts were raised about the feasibility of gene therapy in humans. Therefore, the ability to direct gene transfer vectors to specific target cells is also a crucial task to be solved and will be important not only to achieve a therapeutic effect but also to limit potential adverse effects.

Part II - An Axiomatic Theory of Complete Spreads | Pp. 99-108

Closed and Linear KZ-Monads

Marta Bunge; Jonathon Funk

Gene therapy potentially represents one of the most important developments in modern medicine. Gene therapy, especially of cancer, has created exciting and elusive areas of therapeutic research in the past decade. In fact, the first gene therapy performed in a human was not against cancer but was performed to a 14 year old child suffering from adenosine deaminase (ADA) deficiency. In addition to cancer gene therapy there are many other diseases and disorders where gene therapy holds exciting and promising opportunities. These include amongst others gene therapy within the central nervous system and the cardiovascular system. Improvements of the efficiency and safety of gene therapy is the major goal of gene therapy development. After the death of Jesse Gelsinger, the first patient in whom death could be directly linked to the viral vector used for the treatment, ethical doubts were raised about the feasibility of gene therapy in humans. Therefore, the ability to direct gene transfer vectors to specific target cells is also a crucial task to be solved and will be important not only to achieve a therapeutic effect but also to limit potential adverse effects.

Part II - An Axiomatic Theory of Complete Spreads | Pp. 109-127

Lattice-Theoretic Aspects

Marta Bunge; Jonathon Funk

Gene therapy potentially represents one of the most important developments in modern medicine. Gene therapy, especially of cancer, has created exciting and elusive areas of therapeutic research in the past decade. In fact, the first gene therapy performed in a human was not against cancer but was performed to a 14 year old child suffering from adenosine deaminase (ADA) deficiency. In addition to cancer gene therapy there are many other diseases and disorders where gene therapy holds exciting and promising opportunities. These include amongst others gene therapy within the central nervous system and the cardiovascular system. Improvements of the efficiency and safety of gene therapy is the major goal of gene therapy development. After the death of Jesse Gelsinger, the first patient in whom death could be directly linked to the viral vector used for the treatment, ethical doubts were raised about the feasibility of gene therapy in humans. Therefore, the ability to direct gene transfer vectors to specific target cells is also a crucial task to be solved and will be important not only to achieve a therapeutic effect but also to limit potential adverse effects.

Part III - Aspects of Distributions and Complete Spreads | Pp. 131-159

Localic and Algebraic Aspects

Marta Bunge; Jonathon Funk

Gene therapy potentially represents one of the most important developments in modern medicine. Gene therapy, especially of cancer, has created exciting and elusive areas of therapeutic research in the past decade. In fact, the first gene therapy performed in a human was not against cancer but was performed to a 14 year old child suffering from adenosine deaminase (ADA) deficiency. In addition to cancer gene therapy there are many other diseases and disorders where gene therapy holds exciting and promising opportunities. These include amongst others gene therapy within the central nervous system and the cardiovascular system. Improvements of the efficiency and safety of gene therapy is the major goal of gene therapy development. After the death of Jesse Gelsinger, the first patient in whom death could be directly linked to the viral vector used for the treatment, ethical doubts were raised about the feasibility of gene therapy in humans. Therefore, the ability to direct gene transfer vectors to specific target cells is also a crucial task to be solved and will be important not only to achieve a therapeutic effect but also to limit potential adverse effects.

Part III - Aspects of Distributions and Complete Spreads | Pp. 161-188

Topological Aspects

Marta Bunge; Jonathon Funk

Gene therapy potentially represents one of the most important developments in modern medicine. Gene therapy, especially of cancer, has created exciting and elusive areas of therapeutic research in the past decade. In fact, the first gene therapy performed in a human was not against cancer but was performed to a 14 year old child suffering from adenosine deaminase (ADA) deficiency. In addition to cancer gene therapy there are many other diseases and disorders where gene therapy holds exciting and promising opportunities. These include amongst others gene therapy within the central nervous system and the cardiovascular system. Improvements of the efficiency and safety of gene therapy is the major goal of gene therapy development. After the death of Jesse Gelsinger, the first patient in whom death could be directly linked to the viral vector used for the treatment, ethical doubts were raised about the feasibility of gene therapy in humans. Therefore, the ability to direct gene transfer vectors to specific target cells is also a crucial task to be solved and will be important not only to achieve a therapeutic effect but also to limit potential adverse effects.

Part III - Aspects of Distributions and Complete Spreads | Pp. 189-215