Catálogo de publicaciones - libros

Compartir en
redes sociales


Título de Acceso Abierto

Volcanic Unrest

Joachim Gottsmann ; Jürgen Neuberg ; Bettina Scheu (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Natural Hazards; Geochemistry; Geology; Environmental Law/Policy/Ecojustice; Public Policy

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No requiere 2019 SpringerLink acceso abierto

Información

Tipo de recurso:

libros

ISBN impreso

978-3-319-58411-9

ISBN electrónico

978-3-319-58412-6

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© The Editor(s) (if applicable) and The Author(s) 2019

Tabla de contenidos

Volcanic Unrest and Pre-eruptive Processes: A Hazard and Risk Perspective

J. Gottsmann; J.-C. Komorowski; J. Barclay

Volcanic unrest is complex and capable of producing multiple hazards that can be triggered by a number of different subsurface processes. Scientific interpretations of unrest data aim to better understand (i) the processes behind unrest and their associated surface signals, (ii) their future spatio-temporal evolution and (iii) their significance as precursors for future eruptive phenomena. In a societal context, additional preparatory or contingency actions might be needed because relationships between and among individuals and social groups will be perturbed and even changed in the presence of significant uncertainty. Here we analyse some key examples from three international and multidisciplinary projects (VUELCO, CASAVA and STREVA) where issues around the limits of volcanic knowledge impact on volcanic risk governance. We provide an overview of the regional and global context of volcanic unrest and highlight scientific and societal challenges with a geographical emphasis on the Caribbean and Latin America. We investigate why the forecasting of volcanic unrest evolution and the exploitability of unrest signals to forecast future eruptive behaviour and framing of response protocols is challenging, especially during protracted unrest. We explore limitations of current approaches to decision-making and provide suggestions for how future improvements can be made in the framework of holistic volcanic unrest risk governance. We investigate potential benefits arising from improved communication, and framing of warnings around decision-making timescales and hazard levels.

Pp. 1-21

The Role of Laws Within the Governance of Volcanic Risks

R. J. Bretton; J. Gottsmann; R. Christie

The governance of volcanic risks does not take place in a vacuum. In many cultures, volcanic risks are perceived to be susceptible to governance with the objective of achieving their effective mitigation, and have become the responsibility of the institutions and stakeholders of relevant social communities. An array of international, national and local laws dictate governance infrastructures, the roles of duty holders and beneficiaries and the relationships between them (the stakeholders), duties and rights (the stakes) and acceptable standards of safety and wellbeing (the ultimate rewards). Many regional, national and local stakeholders (individuals and entities) have a range of different, yet complementary, roles, duties, rights and powers. Much of this chapter, which has two main sections, represents a summary of a longer paper (Bretton et al. ) that addresses legal aspects of the future governance of volcanic risks. After a general introduction to relevant terminology in the first section, the second section describes the significant threat posed by periods of volcanic unrest. The third section contains a general introduction to the critical concept of risk which lies at the heart of governance and provides a more detailed description of the many roles that national laws play. Reference is also made to international law which has an increasingly important role in the absence of relevant national laws, or when national laws are inadequate, ineffective or unenforced.

Pp. 23-34

Deterministic Versus Probabilistic Volcano Monitoring: Not “or” But “and”

D. Rouwet; R. Constantinescu; L. Sandri

Volcanic eruption forecasting and hazard assessment are multi-disciplinary processes with scientific and social implications. Our limited knowledge and the randomness of the processes behind a volcanic eruption yield the need to quantify uncertainties on volcano dynamics. With deterministic and probabilistic methods for volcanic hazard assessment not always being in agreement, we propose a combined approach that bridges the two schools of thoughts in order to improve future volcano monitoring. Expert elicitation has proven to be an effective way to bind deterministic research within a probabilistic framework aiming to reduce the uncertainties related to any hazard forecast; yet, numerous exercises based on expert elicitation have revealed that the attempt to reduce uncertainties led to the creation of new ones, often unquantifiable, created by human nature and reasoning during stressful situations. Such reasoning ignores the complexity of volcanic processes and the fact that every scenario has a probability to occur. The recent probabilistic methods and tools marry probabilistic and deterministic approaches and lead to unprecedented models. Nevertheless, probabilistic hazard assessment is often misunderstood as not all of the researchers involved have backgrounds in such matters. A probabilistic method cannot stand-alone as it depends on data input obtained by deterministic approaches. We propose that, given the symbiotic relationship between the two methods, a probabilistic framework can play a role of moderator between various deterministic disciplines, thus creating a coherent environment for discussion and debate among seismologists, geodesists, geochemists. This can be achieved by training all scientists involved in hazard assessment, probability theory and data interpretation, while at least one group member objectively uses the information provided to produce the probabilities. Hence, numerical outcomes can be interpreted transparently as they represent the quantification of experts’ knowledge and related uncertainties. A probabilistic method that incorporates the joint opinions of a group of multi-disciplinary researchers facilitates a more straightforward way of communicating scientific information to decision-makers.

Pp. 35-46

Probabilistic E-tools for Hazard Assessment and Risk Management

Stefania Bartolini; Joan Martí; Rosa Sobradelo; Laura Becerril

The impact of a natural event can significantly affect human life and the environment. Although fascinating, a volcanic eruption creates similar or even greater problems than more frequent natural events due to its multi-hazard nature and the intensity and extent of its potential impact. It is possible to live near a volcanic area and take advantage of the benefits that volcanoes offer, but it is also important to be aware of the existing threats and to know how to minimise risks. In this chapter, we present an integrated approach using e-tools for assessing volcanic hazard and risk management. These tools have been especially designed to assess and manage volcanic risk, to evaluate long- and short-term volcanic hazards, to conduct vulnerability analysis, and to assist decision-makers during the management of a volcanic crisis. The methodology proposed here can be implemented before an emergency in order to identify optimum mitigating actions and how these may have to be adapted as new information is obtained. These tools also allow us identifying the most appropriate probabilistic and statistical techniques for volcanological data analysis and treatment in the context of quantitative hazard and risk assessments. Understanding volcanic unrest, forecasting volcanic eruptions, and predicting the most probable scenarios, all imply a high degree of inherent uncertainty, which needs to be quantified and clearly explained when transmitting scientific information to decision-makers.

Pp. 47-61

The Need to Quantify Hazard Related to Non-magmatic Unrest: From BET_EF to BET_UNREST

Laura Sandri; Roberto Tonini; Dmitri Rouwet; Robert Constantinescu; Ana Teresa Mendoza-Rosas; Daniel Andrade; Benjamin Bernard

Most volcanic hazard studies focus on magmatic eruptions and their accompanying phenomena. However, hazardous volcanic events can also occur during non-magmatic unrest, defined as a state of volcanic unrest in which no migration of magma is recognised. Examples include tectonic unrest, and hydrothermal unrest that may lead to phreatic eruptions. Recent events (e.g. Ontake eruption, September 2014) have demonstrated that the successful forecasting of phreatic eruptions is still very difficult. It is therefore of paramount importance to identify indicators that define the state of non-magmatic unrest. Often, this type of unrest is driven by fluids-on-the-move, requiring alternative monitoring setups, beyond the classical seismic-geodetic-geochemical architectures. Here we present a new version of the probabilistic model BET (Bayesian Event Tree), called BET_UNREST, specifically developed to include the forecasting of non-magmatic unrest and related hazards. The structure of BET_UNREST differs from the previous BET_EF (BET for Eruption Forecasting) by adding a dedicated branch to detail non-magmatic unrest outcomes. Probabilities are calculated at each node by merging prior models and past data with new incoming monitoring data, and the results can be updated any time new data has been collected. Monitoring data are weighted through pre-defined thresholds of anomaly, as in BET_EF. The BET_UNREST model is introduced here, together with its software implementation PyBetUnrest, with the aim of creating a user-friendly, open-access, and straightforward tool to support short-term volcanic forecasting (already available on the VHub platform). The BET_UNREST model and PyBetUnrest tool are tested through three case studies in the frame of the EU VUELCO project.

Pp. 63-82

Groundwater flow and volcanic unrest

Alia Jasim; Brioch Hemmings; Klaus Mayer; Bettina Scheu

Hydrology around active volcanoes is strongly controlled by the interaction between groundwater, and the fluids, dissolved elements and heat associated with magmatic intrusion. The chemical and mechanical processes associated with magmatic unrest can result in observable changes in the hydrothermal system. Consequently, observations of chemical and physical hydrothermal variations may provide insights into the state of volcanic activity. Additionally, the interaction between hydrological and volcanic systems leads to the presence of high-temperature, pressurised, and often acidic fluids, which add to, and intensify, the volcanic hazard. In the following chapter we present the major components of, and controls on, magmatic hydrothermal systems focusing on the mutual perturbation between the groundwater flow system and the volcanic system. We explore how these conditions can be modified by volcanic unrest and we identify feedbacks between dynamic hydrothermal behaviour and on-going unrest. The interaction between these systems, and therefore the associated monitoring signals, are the result of complex groundwater-volcano coupling within multi-phase flow system in evolving lithologies. Nonetheless, detailed monitoring of hydrothermal and hydrological behaviour can provide insights into unrest and the evolution of hazards at restless volcanoes.

Pp. 83-99

Experimental Simulations of Magma Storage and Ascent

C. Martel; R. A. Brooker; J. Andújar; M. Pichavant; B. Scaillet; J. D. Blundy

One of the key issues in utilizing precursor signals of volcanic eruption is to reliably interpret geophysical and geochemical data in terms of magma movement towards the surface. An important first step is to identify where the magma is stored prior to ascent. This can be studied through phase-equilibrium experiments designed to replicate the phase assemblage and compositions of natural pyroclasts or by measuring volatiles in melt inclusions from previous eruptions. The second crucial step is to characterize the magmatic conditions and processes that will guide the eruption style. This may be addressed through controlled dynamic decompression or deformation experiments to examine the different rates that govern the kinetics of syn-eruptive degassing, crystallization, and strain. Comparing the compositional and textural characteristics of these experimental products with the natural samples can be used to retrieve magma ascent conditions. These experimental simulations allow interpretation of direct observations and measurements of syn-eruptive processes leading to more accurate forecasting of future eruptive scenarios.

Pp. 101-110

Magma Chamber Rejuvenation: Insights from Numerical Models

C. P. Montagna; P. Papale; A. Longo; M. Bagagli

Most volcanic systems on Earth are characterized by chemically different magmas that can be found in the erupted products throughout their history. The reasons are multiple, including variations in the mantle source and/or crustal assimilation, as well as shallower processes such as fractional crystallization or mixing and mingling. Magma chamber rejuvenation indicates the processes that happen whenever a magma intrudes from the mantle to shallower depths and encounters an already established storage zone (i.e. a magma chamber or reservoir). Magmas rising from depth are typically characterized by higher temperatures, larger volatile contents and more primitive, mantle-like compositions than those residing in the shallow crust. The interaction with magmas that have already resided at shallower depths for a while (years to thousands of years) varies the physical and chemical properties of both the involved magmatic end-members. Typically, volatile-rich magmas coming from depth are lighter than degassed shallow magma; therefore, a gravitational instability sets in as the two come into contact, which generates convection and thus intense mingling and mixing among the two. These dynamic interactions cause variations in the physical and chemical properties of the magmas themselves, as well as in the stress conditons both inside the reservoir and in the host rock. The volcanic system as a whole enters an unrest scenario, that can evolve to eruption or not depending on the specific conditions. Numerical simulations of the dynamics within magmatic systems can shed light on the features of magma chamber rejuvenation, providing the time scales of mixing processes and possibly of the evolution towards eruption. Coupling with models for the visco-elastic response of the host rock allows the identification of the onset of recharge processes from the analysis of geophysical signals observed at the surface.

Pp. 111-122

Magma Mixing: History and Dynamics of an Eruption Trigger

Daniele Morgavi; Ilenia Arienzo; Chiara Montagna; Diego Perugini; Donald B. Dingwell

The most violent and catastrophic volcanic eruptions on Earth have been triggered by the refilling of a felsic volcanic magma chamber by a hotter more mafic magma. Examples include Vesuvius 79 AD, Krakatau 1883, Pinatubo 1991, and Eyjafjallajökull 2010. Since the first hypothesis, plenty of evidence of magma mixing processes, in all tectonic environments, has accumulated in the literature allowing this natural process to be defined as fundamental petrological processes playing a role in triggering volcanic eruptions, and in the generation of the compositional variability of igneous rocks. Combined with petrographic, mineral chemistry and geochemical investigations, isotopic analyses on volcanic rocks have revealed compositional variations at different length scales pointing to a complex interplay of fractional crystallization, mixing/mingling and crustal contamination during the evolution of several magmatic feeding systems. But to fully understand the dynamics of mixing and mingling processes, that are impossible to observe directly, at a realistically large scale, it is necessary to resort to numerical simulations of the complex interaction dynamics between chemically different magmas.

Pp. 123-137

Gases as Precursory Signals: Experimental Simulations, New Concepts and Models of Magma Degassing

M. Pichavant; N. Le Gall; B. Scaillet

Volatile release during magma ascent in volcanic conduits (magma degassing) forms the basis for using volcanic gases as precursory signals. Recent high temperature high pressure experimental simulations have yielded results that challenge key assumptions related to magma degassing and are important for the interpretation of glass inclusion and gas data and for using volcanic gas as precursory signals. The experimental data show that, for ascent rates expected in natural systems, pure HO basaltic melts will evolve mostly close to equilibrium when decompressed from 200 to 25 MPa. In the same way, degassing of HO–S species evolves at near equilibrium, although this conclusion is limited by the number of S solubility data available for basaltic melts. However, degassing of CO is anomalous in all studies, whether performed on basaltic or rhyolitic melts. CO stays concentrated in the melt at levels far exceeding solubilities. The anomalous behaviour of CO, when associated with near equilibrium HO losses, yields post-decompression glasses with CO concentrations systematically higher than equilibrium degassing curves. Therefore, there is strong experimental support for disequilibrium degassing during ascent of CO-bearing magmas. The existence of volatile concentration gradients around nucleated gas bubbles suggests that degassing is controlled by the respective mobilities (diffusivities) of volatiles within the melt. The recently formulated diffusive fractionation model reproduces the main characteristics, especially the volatile concentrations, of experimental glasses. The model also shows that the gas phase is more HO-rich than expected at equilibrium because CO transfer toward the gas phase is hampered by its retention within the melt. However, only integrated gas compositions are calculated. Similarly, only bulk experimental fluid compositions are determined in recent experiments. Thus, constraints on the local gas phase are becoming necessary for the application to volcanoes. This stresses the need for the direct analysis of gas bubbles nucleated in decompression experiments. Pre-eruptive changes in volcanic CO/SO and HO/CO gas ratios are interpreted to reflect different pressures of gas-melt segregation in the conduit, an approach that assume gas-melt equilibrium. However, if disequilibrium magma degassing is accepted, the use of volatile saturation codes is no longer possible and caution must be exercised with the application of local equilibrium to volcanic gases. Future developments in the interpretation of gas data require progress from both sides, experimental and volcanological. One priority is to reduce the gap in scales between experiments and gas measurements.

Pp. 139-154