Catálogo de publicaciones - libros

Compartir en
redes sociales


Título de Acceso Abierto

Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques

Mohammad Zaman Shabbir A. Shahid Lee Heng

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Soil Science & Conservation; Water Quality/Water Pollution; Agriculture; Plant Sciences; Environmental Management

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No requiere 2018 SpringerLink acceso abierto

Información

Tipo de recurso:

libros

ISBN impreso

978-3-319-96189-7

ISBN electrónico

978-3-319-96190-3

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© International Atomic Energy Agency 2018

Tabla de contenidos

Introduction to Soil Salinity, Sodicity and Diagnostics Techniques

Shabbir A. Shahid; Mohammad Zaman; Lee Heng

It is widely recognized that soil salinity has increased over time. It is also triggered with the impact of climate change. For sustainable management of soil salinity, it is essential to diagnose it properly prior to take proper intervention measures. In this chapter soil salinity (dryland and secondary) and sodicity concepts have been introduced to make it easier for readers. A hypothetical soil salinity development cycle has been presented. Causes of soil salinization and its damages, socio-economic and environmental impacts, and visual indicators of soil salinization and sodicity have been reported. A new relationship between ECe (mS/cm) and total soluble salts (meq/l) established on UAE soils has been reported which is different to that established by US Salinity Laboratory Staff in the year 1954, suggesting the latter is specific to US soils, therefore, other countries should establish similar relationships based on their local conditions. Procedures for field assessment of soil salinity and sodicity are described and factors to convert EC of different soil:water (1:1, 1:2.5 & 1:5) suspensions to ECe from different regions are tabulated and hence providing useful information to those adopting such procedures. Diversified salinity assessment, mapping and monitoring methods, such as conventional (field and laboratory) and modern (electromagnetic-EM38, optical-thin section and electron microscopy, geostatistics-kriging, remote sensing and GIS, automatic dynamics salinity logging system) have been used and results are reported providing comprehensive information for selection of suitable methods by potential users. Globally accepted soil salinity classification systems such as US Salinity Lab Staff and FAO-UNESCO have been included.

Pp. 1-42

Soil Salinity: Historical Perspectives and a World Overview of the Problem

Shabbir A. Shahid; Mohammad Zaman; Lee Heng

Soil salinity is not a recent phenomenon, it has been reported since centuries where humanity and salinity have lived one aside the other. A good example is from Mesopotamia where the early civilizations first flourished and then failed due to human-induced salinization. A publication ‘ highlights the history of salinization in Mesopotamia where three episodes (earliest and most serious one affected Southern Iraq from 2400 BC until at least 1700 BC, a milder episode in Central Iraq occurred between 1200 and 900 BC, and the east of Baghdad, became salinized after 1200 AD) have been reported. There are reports clearly revealing that ‘, e.g. Mesopotamia and the Viru valley of Peru. The flooding, over-irrigation, seepage, silting, and a rising water table have been reported the main causes of soil salinization. Recent statistics of global extent of soil salinization do not exist, however, various scientists reported extent differently based on different data sources, such as there have been reports like, 10% of the total arable land as being affected by salinity and sodicity, one billion hectares are covered with saline and/or sodic soils, and between 25% and 30% of irrigated lands are salt-affected and essentially commercially unproductive, global distribution of salt-affected soils are 954 million ha, FAO in 1988 presented 932 million ha salt-affected soils, of almost 1500 million ha of dryland agriculture, 32 million ha are salt-affected. Precise information on the recent estimates of global extent of salt-affected soils do not exist, many countries have assessed their soils and soil salinization at the national level, such as Kuwait, United Arab Emirates, Middle East, and Australia etc. Considering the current extent of salt-affected soils the cost of salt-induced land degradation in 2013 was $441 per hectare, a simple benefit transfer suggests the current annual economic losses could be $27 billion.

Pp. 43-53

Salinity and Sodicity Adaptation and Mitigation Options

Shabbir A. Shahid; Mohammad Zaman; Lee Heng

Soil salinity and sodicity are twin constraints to agriculture production in many countries causing significant losses of crop production and land degradation. Once the salinity and sodicity problems are properly diagnosed, an integrated soil reclamation program may be formulated including combination of physical, chemical, hydrological and biological methods to rectify the twin problems. A combination of adaptation and mitigation technologies are to be adopted, for example adaptation allows the continued use of salt-affected soils by adjusting in response to the degree by which salinity and sodicity development has affected the soil, whereas, in contrast, mitigation refers to the technologies which are adopted to stop salinization to occur. It should be remembered that there is no single universal mitigation technology suitable for all soils, however, diagnostic based recommendations work satisfactorily for a specific site or location. Prior to setting up soil reclamation plan it is essential to review the available resources (farmer budget, availability and quality of water) and the objectives of reclamation and the reclamation plan established suiting the specific farmer needs. In this chapter, various soil reclamation methods such as; physical-leveling, subsoiling, mixing sand, seed bed preparation and salts scrapping); chemical (use of gypsum based on gypsum requirement, sulfur, acids etc.), hydrological-selection of suitable irrigation system-drip, sprinkler, bubbler, furrow, using the concept of leaching requiring/fraction to manage rootzone salinity, flushing, drainage, blending of water etc.; biological (use of organic amendments, green manuring, farm yard manures and selection of salt-tolerant crops) have be described. In addition, various methods of screening crops against salinity including hydroponics, field screening and serial biological concentration approach are described. Climate Smart Agriculture practices, integrated soil fertility management using nutrient stewardship are concisely reported. Procedures of salt-harvesting from saline lands and deep deposits and their commercial exploitation in industries are also introduced.

Pp. 55-89

Irrigation Systems and Zones of Salinity Development

Mohammad Zaman; Shabbir A. Shahid; Lee Heng

Selection of suitable irrigation systems (drip-surface and subsurface, sprinkler, bubbler, furrow etc.) for irrigated agriculture is one way of improving water use efficiency and to manage root zone salinity. These irrigation systems develop salinity zones differently which needs to be understood for various reasons, such as where to place the seed for good germination and where to apply leaching to maintain the root zone salinity below crop threshold salinity level. In this chapter emphasis have been made to describe various irrigation systems and zones of salinity development under each system. In surface irrigation system (flood, surge, sprinkler, bubbler) the maximum salinity is developed in deeper layers based on the wetting front and the lowest salinity is at the surface. Drip irrigation is often preferred to sprinkler irrigation for species with a high sensitivity to leaf necrosis. In surface drip irrigation salts concentrate along the perimeters of the expanding wetting soil zone, with the lowest salt concentrations occurring in the immediate vicinity of the water source, the highest at the soil surface, and in the very center of any two drippers, i.e. at the boundary of the volume of wetted soil. In the subsurface drip irrigation, the salts continuously buildup at the soil surface through an upward capillary movement from the buried irrigation lines during growing season, therefore the concept of leaching requirement (LR) does not work specially to leach the salts from surface above the buried drip lines. In furrow irrigation system maximum salts accumulate in ridges of soil between the furrows. The salt accumulation in furrow irrigation using different bed shapes (flat top bed, sloping beds) is shown in different figures giving guidelines to the farmers to place seeds in safe zone to accomplish high germination rate. Following the salinity development zones, various methods of salinity management are described. Relative crop salinity tolerance rating is described briefly. Prediction of crop yield in salinized farms compared to non-saline farms is also described using Maas and Hoffman equation.

Pp. 91-111

Irrigation Water Quality

Mohammad Zaman; Shabbir A. Shahid; Lee Heng

The quality of irrigation waters differs in various regions, countries and locations based on how the groundwater has been extracted and used, the rainfall intensity and subsequent aquifer recharge. The use of groundwater for agriculture in hot arid countries where rainfall is scarce leads to increase groundwater salinity and limits the selection of crops for cultivation. It is therefore important to determine the irrigation water quality. The concentration and composition of soluble salts in water determines its quality for irrigation. Four basic criteria for evaluating water quality for irrigation purposes are described, including water salinity (EC), sodium hazard (sodium adsorption ratio-SAR), residual sodium carbonates (RSC) and ion toxicity. Toxicities of boron and chlorides to plants are described. More specifically the relative tolerance levels of plants to boron is tabulated for easy understanding. The most important part of this chapter is the modification of water quality diagram of US Salinity Laboratory Staff published in the year 1954, this diagram does not present EC over 2250 μS cm however, most of the irrigation waters present salinity levels higher than 2250 μS cm. Therefore, to accommodate higher water salinity levels the water classification diagram is extended to water salinity of 30,000 μS cm allowing the users of the diagram to place EC values above 2250 μS cm. The salinity and sodicity classes are included in this chapter to provide information for crop selection and develop salinity and sodicity management options. The procedures for water salinity reduction through blending of different waters and management of water sodicity using gypsum are described by giving examples.

Pp. 113-131

The Role of Nuclear Techniques in Biosaline Agriculture

Mohammad Zaman; Shabbir A. Shahid; Lee Heng

The major constraints under Saline Agriculture are the availability of essential nutrients and water to the plant which are adversely affected by excessive salts in the soil solution. Among the essential plant nutrients, N plays a key role in plant growth and productivity. Nuclear and isotopic techniques (also called nuclear-based techniques) are a complement to, not a substitute for, non-nuclear conventional techniques. Nuclear-based techniques, however, do have several advantages over conventional techniques by providing unique, precise and quantitative data on soil nutrient and soil moisture pools and fluxes in the soil-plant-water and atmosphere systems. Isotopic techniques provide useful information in assessing soil-water-nutrient management which can be tailored to specific agroecosystems for managing soil salinity. For example, N stable isotopic techniques can be used to measure rates of the various N transformation processes in soil-plant-water and atmosphere systems, such as N mineralization-immobilization, nitrification, biological N fixation, N use efficiency, and microbial sources of production of nitrous oxide (NO), a greenhouse and ozone depleting gas, in soil. The use of oxygen-18, hydrogen-2 (deuterium) and other isotopes is an integral part of agricultural water management, allowing the identification of water sources and the tracking of water movement and pathways within agricultural landscapes as influenced by different irrigation technologies, cropping systems and farming practices. It also helps in the understanding of plant water use, quantifying crop transpiration and soil evaporation and allows us to devise strategies to improve crop production, reduce unproductive water losses and prevent land and water degradation.

Pp. 133-164