Catálogo de publicaciones - libros

Compartir en
redes sociales


Título de Acceso Abierto

Freshwater Microplastics

Martin Wagner ; Scott Lambert (eds.)

Resumen/Descripción – provisto por la editorial
Emerging contaminants; Plastic pollution; Microplastic pollution; Microplastic-associated biofilms; Freshwater pollution; Inland water pollution; Plastic contamination
Palabras clave – provistas por la editorial

Emerging contaminants; Plastic pollution; Microplastic pollution; Microplastic-associated biofilms; Freshwater pollution; Inland water pollution; Plastic contamination

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No requiere 2018 Directory of Open access Books acceso abierto
No requiere 2018 SpringerLink acceso abierto

Información

Tipo de recurso:

libros

ISBN impreso

978-3-319-61614-8

ISBN electrónico

978-3-319-61615-5

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© The Editor(s) (if applicable) and The Author(s) 2018

Cobertura temática

Tabla de contenidos

Risk Perception of Plastic Pollution: Importance of Stakeholder Involvement and Citizen Science

Kristian Syberg; Steffen Foss Hansen; Thomas Budde Christensen; Farhan R. Khan

Risk perception has a significant impact on how society reacts to a given risk. There have been cases where a mismatch between the actual risk and the perception of it has led to poor decisions on societal initiatives, such as inappropriate regulatory measures. It is therefore important that the perception of risk is based on an informed foundation acknowledging the biases and drivers that inevitably go with risk perception. Plastic pollution differs in regard to other classical risks, such as those posed by chemicals or genetically modified organisms (GMOs), since the pollution is more visible and already has a significant magnitude. At the same time, everyone is familiar with using plastic, and our daily lives are highly dependent on the use of plastic. This offers some potential to strengthen the societal risk perception and subsequently implement effective measures to address the pollution.

In this chapter, we define eight risk perception drivers (voluntariness, control, knowledge, timing, severity, benefit, novelty, and tangibility) and relate these drivers to plastic pollution. We discuss the process in which plastic pollution has been recognized as an important environmental problem by scientists, the public, and policy makers and elaborate on how the eight risk drivers have influenced this process. Plastic pollution has several of the characteristics that can enhance people’s perception of the risk as being important and which has generated great awareness of the problem. The chapter finally discusses how risk perception can be improved by greater stakeholder involvement and utilization of citizen science and thereby improve the foundation for timely and efficient societal measures.

Pp. 203-221

Understanding the Risks of Microplastics: A Social-Ecological Risk Perspective

Johanna Kramm; Carolin Völker

The diagnosis that we are living in a world risk society formulated by Ulrich Beck 20 years ago (Beck, Kölner Z Soziol Sozialpsychol 36:119–147, 1996) has lost nothing of its power, especially against the background of the Anthropocene debate. “Global risks” have been identified which are caused by human activities, technology, and modernization processes. Microplastics are a by-product of exactly these modernization processes, being distributed globally by physical processes like ocean currents, and causing effects far from their place of origin. In recent years, the topic has gained great prominence, as microplastics have been discovered nearly everywhere in the environment, raising questions about the impacts on food for human consumption. But are microplastics really a new phenomenon or rather a symptom of an old problem? And exactly what risks are involved? It seems that the phenomenon has accelerated political action—the USA has passed the Microbead-Free Waters Act 2015—and industries have pledged to fade out the use of microbeads in their cosmetic products. At first sight, is it a success for environmentalists and the protection of our planet?

This chapter deals with these questions by adopting a social-ecological perspective, discussing microplastics as a global risk. Taking four main characteristics of global risks, we develop four arguments to discuss (a) the everyday production of risk by societies, (b) scientific risk evaluation of microplastics, (c) social responses, and (d) problems of risk management. To illustrate these four issues, we draw on different aspects of the current scientific and public debate. In doing so, we contribute to a comprehensive understanding of the social-ecological implications of microplastics.

Pp. 223-237

Freshwater Microplastics: Challenges for Regulation and Management

Nicole Brennholt; Maren Heß; Georg Reifferscheid

The accumulation of plastic debris in aquatic environments is one of the major but least studied human pressures on aquatic ecosystems. Besides the general waste burden in waterbodies, (micro)plastic debris gives rise to ecological and social problems. Related to marine ecosystems, these problems are already in the center of interest of science, policy, and public. The United Nations Environment Programme, for instance, drafted a joint report on “marine plastic debris and microplastics,” and the European Community included the issue into the European Marine Strategy Framework Directive, descriptor 10 “marine litter.”

However, (micro)plastic litter in freshwater systems is not yet explicitly addressed in the respective regulations, although the issue is relevant for many international and national policy instruments and initiatives. Many conventions, agreements, regulations, strategies, action plans, programs, and guidelines refer to “all wastes” in general. This should also concern (micro)plastic waste.

This chapter provides an overview of the regulatory instruments developed at different levels to address freshwater (micro)plastic litter. Beyond that, specific management options and measures that are either compulsory or voluntary are presented. Nevertheless, only few options have been realized so far. Reasons are numerous, first and foremost the lack of consensus on the definition of microplastics.

The complexity of these particulate stressors with very heterogeneous physicochemical characteristics poses new challenges for regulation and management. We highlight the most important questions from the perspective of freshwater monitoring. Furthermore, we discuss a possible adaption of existing environmental policy instruments and potential management options for single categories of (micro)plastics.

Pp. 239-272

Microplastic: What Are the Solutions?

Marcus Eriksen; Martin Thiel; Matt Prindiville; Tim Kiessling

The plastic that pollutes our waterways and the ocean gyres is a symptom of upstream material mismanagement, resulting in its ubiquity throughout the biosphere in both aquatic and terrestrial environments. While environmental contamination is widespread, there are several reasonable intervention points present as the material flows through society and the environment, from initial production to deep-sea microplastic sedimentation. Plastic passes through the hands of many stakeholders, with responsibility for environmental contamination owned, shared, or rejected by plastic producers, product/packaging manufacturers, government, consumers, and waste handlers.

The contemporary debate about solutions, in a broad sense, largely contrasts the circular economy with the current linear economic model. While there is a wide agreement that improved waste recovery is essential, how that waste is managed is a different story. The subjective positions of stakeholders illuminate their economic philosophy, whether it is to maintain demand for new plastic by incinerating postconsumer material or maintain material efficacy through recycling, regulated design, and producer responsibility; many proposed solutions fall under linear or circular economic models. Recent efforts to bring often unheard stakeholders to the table, including waste pickers in developing countries, have shed new light on the life cycle of plastic in a social justice context, in response to the growing economic and human health concerns.

In this chapter we discuss the main solutions, stakeholder costs, and benefits. We emphasize the role of the “honest broker” in science, to present the best analysis possible to create the most viable solutions to plastic pollution for public and private leadership to utilize.

Pp. 273-298