Catálogo de publicaciones - libros
Título de Acceso Abierto
High Mountain Conservation in a Changing World
Parte de: Advances in Global Change Research
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Pyrenees; nature conservation; species distribution; lakes; forests
Disponibilidad
| Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
|---|---|---|---|---|
| No requiere | 2017 | Directory of Open access Books |
| |
| No requiere | 2017 | SpringerLink |
|
Información
Tipo de recurso:
libros
ISBN impreso
978-3-319-55981-0
ISBN electrónico
978-3-319-55982-7
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2017
Cobertura temática
Tabla de contenidos
Life-History Responses to the Altitudinal Gradient
Paola Laiolo; José Ramón Obeso
We review life-history variation along elevation in animals and plants and illustrate its drivers, mechanisms and constraints. Elevation shapes life histories into suites of correlated traits that are often remarkably convergent among organisms facing the same environmental challenges. Much of the variation observed along elevation is the result of direct physiological sensitivity to temperature and nutrient supply. As a general rule, alpine populations adopt ‘slow’ life cycles, involving long lifespan, delayed maturity, slow reproductive rates and strong inversions in parental care to enhance the chance of recruitment. Exceptions in both animals and plants are often rooted in evolutionary legacies (e.g. constraints to prolonging cycles in obligatory univoltine taxa) or biogeographic history (e.g. location near trailing or leading edges). Predicting evolutionary trajectories into the future must take into account genetic variability, gene flow and selection strength, which define the potential for local adaptation, as well as the rate of anthropogenic environmental change and species’ idiosyncratic reaction norms. Shifts up and down elevation in the past helped maintain genetic differentiation in alpine populations, with slow life cycles contributing to the accumulation of genetic diversity during upward migrations. Gene flow is facilitated by the proximity of neighbouring populations, and global warming is likely to move fast genotypes upwards and reduce some of those constraints dominating alpine life. Demographic buffering or compensation may protect local alpine populations against trends in environmental conditions, but such mechanisms may not last indefinitely if evolutionary trajectories cannot keep pace with rapid changes.
Part IV - Global Change and High Mountain Conservation | Pp. 253-283
Non-equilibrium in Alpine Plant Assemblages: Shifts in Europe’s Summit Floras
Christian Rixen; Sonja Wipf
Climate warming has been more pronounced in Arctic and alpine areas, and changes in the mountain flora can be expected as the temperature envelope moves upslope. On the one hand, alpine habitats will shrink due to upward migration of species from lower areas, such as trees and tall plants. On the other hand, extinctions of summit plants may be slowed down considerably by the high diversity of microhabitats, the longevity of alpine plants and positive plant–plant interactions in extreme environments. This review chapter attempts to document and monitor vegetation changes on mountain summits. Vegetation surveys that repeat century-old historical vegetation records show considerable upward migration and subsequent increases in species on summits. This trend apparently has accelerated in recent decades. Detailed monitoring of the last decade in European mountain ranges, however, shows that this vegetation change may be at the cost of rare endemic species and alpine specialists in drier Mediterranean regions. This chapter furthermore reviews other factors than temperature influencing alpine vegetation, namely precipitation and snow, nutrients, atmospheric CO concentrations and land use. A subsequent question is how threatened mountain flora is by the ongoing environmental changes. Finally, this chapter discusses options for conservation and land use in high-alpine areas.
Part IV - Global Change and High Mountain Conservation | Pp. 285-303
Changes in Climate, Snow and Water Resources in the Spanish Pyrenees: Observations and Projections in a Warming Climate
Enrique Morán-Tejeda; Juan Ignacio López-Moreno; Alba Sanmiguel-Vallelado
The Pyrenees constitute one of the greatest sources of freshwater in the Spanish territory, but, like many other mountain systems in the world, they are subject to environmental changes that ultimately affect the availability of water resources in areas downstream. In this study, we offer an assessment of hydrological changes in the Pyrenees, from a warming climate perspective, including climate and snow cover trends, changes in the timing of river flows, and future changes under climate change scenarios. Overall, we found that increasing temperatures are responsible for a lesser accumulation of snow over time, although with spatial differences. As a consequence, the occurrence of spring flows (that largely depend on snowmelt) on the studied rivers, has shifted earlier by approximately one month (from mid-June to mid-May). Future projections, which are made by coupling regional climate models outputs and hydrological modelling, indicate that observed decrease in snow accumulation and shifts in streamflow timing will exacerbate in a warmer short-term future (2050). The amount of water yields will not change significantly, only will suffer a slight decrease due to increased evapotranspiration. Observed and projected hydrological changes must be considered by water managers and environmental technicians if a sustainable management of the water resource and the mountain territory is to be done.
Part IV - Global Change and High Mountain Conservation | Pp. 305-323
Atmospheric Chemical Loadings in the High Mountain: Current Forcing and Legacy Pollution
Lluís Camarero
Human emissions have changed the chemistry of atmosphere. Potentially toxic chemicals have been spread, and the global cycles of some key elements have been disrupted. Because enhanced atmospheric precipitation and cold trapping caused by elevation, high mountain ecosystems are considered as regional convergence areas of atmospheric pollutants. In this chapter, research on surface waters acidification, pollution by trace elements, and atmospheric nutrient inputs in the Pyrenees is reviewed. Pyrenean lakes have experienced only a moderate acidification, due partly to an also moderate acid load and partly to the neutralising cations carried by dust. Presently, declining concentrations of sulphate in lakes indicate that recovery is proceeding. Pollution by trace elements dates more than two millennia back. The primary accumulation sites are the sediments of lakes. Soils also hold an important burden, and there is evidence that some elements are being currently remobilised. This is causing a delayed pollution, despite deposition of several trace metals is declining. The emissions of artificial reactive nitrogen have caused increased deposition on the Pyrenean catchments, which are thus nitrogen saturated. A parallel increase of phosphorus deposition has occurred, likely caused by climatic reasons. The combined effect of both seems to be an enhanced uptake of nitrogen by phytoplankton causing a lower nitrogen concentration in lakes and a possible shift from phosphorus-to-nitrogen limitation of phytoplankton growth, as well as an incipient eutrophication. All these are examples of impacts in remote natural areas that require a global strategy of conservation beyond the boundaries of the ecosystems affected.
Part IV - Global Change and High Mountain Conservation | Pp. 325-341
Importance of Long-Term Studies to Conservation Practice: The Case of the Bearded Vulture in the Pyrenees
Antoni Margalida
Detailed, long-term scientific studies are necessary for conservation purposes, but with the main handicap to have the continual economic support required for them. Behavioural and conservation biology studies need long-term projects to achieve robust data, but managers, administrations and policy-makers need, in most cases, immediate results. Here I show several examples of the research obtained from a long-term study (1987–2014) in one of the most threatened species in Pyrenean mountains, the bearded vulture (), highlighting the importance of such long-term research. The results show how long-term studies are necessary to identify conservation problems, to understand demographic changes on populations and priorities to apply conservation measures. The study’s findings allowed the identification of the negative density-dependent effects on fecundity, the lack of recolonization of new territories outside the current distribution area and the increase in polyandrous trios, suggesting an initial optimal habitat saturation. From a management point of view, the studies show that supplementary feeding sites (SFS) can have detrimental effects on fecundity but increases pre-adult survival. Also, illegal poisoning is increasing, and the demographic simulations suggest a regressive scenario in population dynamics if this factor is not eliminated. More recently, anthropogenic activities through human health regulations that affect habitat quality can suddenly modify demographic parameters. The results obtained about changes in nest-site selection, mating system and demographic parameters can only be achieved through long-term studies, suggesting the importance of long-term research to provide accurate information to managers and policy-makers to optimise the application of conservation measures.
Part IV - Global Change and High Mountain Conservation | Pp. 343-383
Monitoring Global Change in High Mountains
Regino Zamora; Antonio J. Pérez-Luque; Francisco J. Bonet
Long-term ecological research provides essential information to understand the complex dynamics of natural systems. In a global change scenario, high mountains represent an exceptional ecology field lab for long-term research and monitoring, offering an enormous mosaic of ecological conditions existing along mountain slopes. Mountains ecosystems also constitute invaluable observatories of the atmosphere and all the aspects related to climate, atmospheric particle deposition, pollutants, greenhouse gases, or the transport of resistant biological forms. Mountains are sensors for early detection of change. In the Sierra Nevada LTER site (southern Spain), we have been implementing a long-term monitoring programme taking advantage of the high altitude and geographical position of this Mediterranean mountain. We have identified the main expected impacts in the context of global change and analysed the biophysical and socioeconomic data available to assess exposure, sensitivity, and adaptive capacity of ecosystems to future scenarios. The study incorporates a retrospective of past human management of land use, to understand the current state of conservation of the ecosystems and make plausible forecasts on its response to future scenarios. The results show the following: (1) an ancestral human footprint on the ecosystems of Sierra Nevada, particularly evident during the 20th century; (2) a moderate climate warming, with reduction and increased variability in precipitation, as well as a consequent reduction in snow-cover duration during the last few decades; (3) significant changes in biophysical characteristics of rivers and mountain lakes; and (4) shifts in the distribution and phenology of many species of plants and animals along elevation gradients.
Part IV - Global Change and High Mountain Conservation | Pp. 385-413