Catálogo de publicaciones - libros
Título de Acceso Abierto
Renewing Local Planning to Face Climate Change in the Tropics
Parte de: Green Energy and Technology
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
climate vulnerability; urban resilience; climate change; adaptation; planning; environmental risk analysis; decision making; disaster risk reduction; tropical climate management
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2017 | SpringerLink | ||
No requiere | 2017 | Directory of Open access Books |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-319-59095-0
ISBN electrónico
978-3-319-59096-7
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2017
Cobertura temática
Tabla de contenidos
Renewing Climate Planning Locally to Attend the 11th Sustainable Development Goal in the Tropics
Maurizio Tiepolo; Alessandro Pezzoli; Vieri Tarchiani
In the last seven years, tropical cities with a climate plan have tripled compared to the previous seven years. According to the 11th United Nations’ Sustainable Development Goal, climate planning should significantly increase by 2030. The Sendai framework for disaster risk reduction () and the New urban agenda signed in Quito () indicate how to achieve this goal through analysis, categories of plans and specific measures. This chapter identifies the main obstacles to the significant increase in tropical human settlements with a climate plan and the possible solutions. First of all, the distribution and trend at 2030 of tropical human settlements are ascertained. Then local access to information on damage, hazard, exposure, vulnerability and risk, and the consideration of these aspects in the national guides to local climate planning are verified. Lastly, the categories of plans and climate measures recommended by the United Nations are compared with those that are most common today, using a database of 401 climate plans for 338 tropical cities relating to 41 countries. The chapter highlights the fact that the prescription for treating tropical cities affected by climate change has been prepared without an accurate diagnosis. Significantly increasing climate planning must consider that small-medium human settlements in the Tropics will prevail at least until 2030. And most effort will be required from Developing and Least Developed Countries. The recommendations of the United Nations concerning the preliminary analyses ignore the fact that local authorities usually do not have access to the necessary information. Climate plans and recommended measures are not those currently in use. We propose three areas of action to facilitate the mainstreaming of the recommendations in the tropical context. They require a renewal of the local planning process if we intend to reach the 11th SDG by 2030.
Pp. 1-18
Setting up and Managing Automatic Weather Stations for Remote Sites Monitoring: From Niger to Nepal
Francesco Sabatini
Surface weather observations are widely expanding for multiple reasons: availability of new technologies, enhanced data transmission features, transition from manual to automatic equipment, early warning for critical climate risks. One of the main objective is to rehabilitate/increase the density of existing network, by providing data from new sites and from sites that are difficult to access and inhospitable. Despite the increasing number of AWS’s deployed, many remote sites are still not covered by surface observations. The goal is to improve AWS network planning, especially in regions where the scarcity of local trained personnel and funding availability to manage the instrumentation are relevant issues. Some consultancies performed in the past aimed to support, remotely and/or locally, National weather services, Public agencies, Local authorities and International organizations in defining and evaluating AWS’s siting and selection. The efficacy of the results mainly depends on the accurate choice of the sites of installation (network plan), on the correct selection and description of instrumentation type to prepare the international tenders, on the training process to improve the AWS’s management efficiency. The present chapter would discuss some of the main issues arisen from the experience gained during the institutional activities and consultancies in international projects.
Part I - Analysis for Planning | Pp. 21-39
Hazard Events Characterization in Tillaberi Region, Niger: Present and Future Projections
Maurizio Bacci; Moussa Mouhaïmouni
Niger is one of the countries most vulnerable to climatic risks. An adaptation to meet these threats is urgent and supported by politicians and decision makers, as stressed in the (PANA) of Niger. The main aim of this paper is to provide an assessment of the current and future scenario of natural hazards in Tillaberi Region (Niger). The mapping of hazard changes in the study area is done comparing the probability of recurrence of severe meteorological conditions for droughts and floods between present and future climate using several projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The result is a hazard characterization highlighting the need for urgent interventions. The natural hazard information with exposure and vulnerability assessment indicators can help decision makers in prioritizing interventions in the Tillabéri Region using an objective approach. This methodology has been proposed within the framework of the ANADIA Project that aims to support disaster prevention activities, from national to local scale, helping institutions in the design and implementation of disaster risk management strategies.
Part I - Analysis for Planning | Pp. 41-56
Characterization of Climate Risks for Rice Crop in Casamance, Senegal
Maurizio Bacci
This chapter contributes to a global reflection on climate change and its implications for agricultural production. We present a case study aiming to quantify trends of climate risks for rice crop in Casamance (Senegal). We evaluate the recurrence of drought and extreme rainfall conditions in the most sensitive phases of plant life and identify trends in the rainy season distribution. To overcome the low quality of climate records from gauge stations in the Region we use the rainfall estimation Climate Hazards group with InfraRed Precipitation Stations (CHIRPS), a daily gridded dataset with 0.05′ resolution over the period 1981–2013. The analysis is centered on the critical aspects that determine rice final yield such as: availability of water in the (i) plant germination and (ii) flowering phases, and (iii) the dynamics of the rainy season. We use the return period method to identify extreme events probability in rice crop’s sensitive phases. Lastly, we identify the dynamics of the three parameters of the growing season: start, end and length by highlighting significant changes recorded in the study period (1981–2010). These outputs aim to support strategic agronomic choices in the Region.
Part I - Analysis for Planning | Pp. 57-72
A Methodology for the Vulnerability Analysis of the Climate Change in the Oromia Region, Ethiopia
Elena Belcore; Angela Calvo; Carolin Canessa; Alessandro Pezzoli
Goal of the vulnerability research of the last years is to evaluate which community, region, or nation is more vulnerable in terms of its sensitive to damaging effects of extreme meteorological events like floods or droughts. Ethiopia is a country where it is possible to find the described conditions. Aim of this work was to develop an integrated system of early warning and response, whereas neither landmark data nor vulnerability drought analysis existed in the country. Specifically, a vulnerability index and a capacity to react index of the population of three Woredas in the Oromia Region of Ethiopia were determined and analysed. Input data concerned rainfall, water availability, physical land characteristics, agricultural and livestock dimensions, as well as population and socio-economic indices. Data were collected during a specific NGO project and thanks to a field research funded by the University of Torino. Results were analysed and specific maps were drawn. The mapping of the vulnerability indices revealed that the more isolated Woreda with less communication roads and with less water sources presented the worst data almost on all its territory. Despite not bad vulnerability indices in the other two Woredas, however, population here still encountered difficulty to adapt to sudden climatic changes, as revealed by the other index of capacity to reaction. Beyond the interpretation of each parameter, a more complete reading key was possible using the SPI (Standardized Precipitation Index) beside these indicators. In a normalized scale between 0 and 1, in this study the calculated annual SPI index was 0.83: the area is therefore considerably exposed to the drought risk, caused by an high intensity and frequency of rainfall lack.
Part I - Analysis for Planning | Pp. 73-102
Tracking Climate Change Vulnerability at Municipal Level in Rural Haiti Using Open Data
Maurizio Tiepolo; Maurizio Bacci
In Least Developed tropical Countries, the vulnerability assessment to climate change (CC) at local scale follows an indicator-based approach and uses information gathered mainly through household surveys or focus groups. Conceived in this way, the vulnerability assessment is rarely repeatable in time, cannot be compared with those carried out in other contexts and usually has low spatial coverage. The growing availability of open data at municipal level, routinely collected, now allows us to switch to vulnerability tracking (continuous, low cost, consistent with global monitoring systems). The aim of this chapter is to propose and verify the applicability of a VICC-Vulnerability Index to Climate Change on a municipal scale for Haiti. The chapter identifies open data on national, departmental and municipal scale, selects the information on a municipal scale on the basis of quality, identifies the indicators, evaluates the robustness of the index and measures it. The index consists of 10 indicators created using information relating to monthly precipitations, population density, flood prone areas, crop deficit, farmers for self-consumption, rural accessibility, local plans for CC adaptation, irrigated agriculture and cholera incidence. This information is gathered for the 125 mainly rural municipalities of Haiti. The description and discussion of the results is followed by suggestions to improve the index aimed at donors, local authorities and users.
Part I - Analysis for Planning | Pp. 103-131
Visualize and Communicate Extreme Weather Risk to Improve Urban Resilience in Malawi
Alessandro Demarchi; Elena Isotta Cristofori; Anna Facello
Since the last century, an unprecedented settlement expansion, mainly generated by an extraordinary world population growth, has made urban communities always more exposed to disasters. Casualties and economic impacts due to hydro-meteorological hazards are dramatically increasing, especially in developing countries. Although the scientific community is currently able to provide innovative technologies to accurately forecast severe weather events, scientific products are often not easily comprehensible for local stakeholders and more generally for decision makers. On the other hand the integration of different layers, such as hazard, exposed assets or vulnerability through GIS, facilitates the risk assessment and the comprehension of risk analysis. This work presents a methodology to enhance urban resilience through the integration into a GIS of satellite-derived precipitation data and geospatial reference datasets. Through timely and meaningful hydro-meteorological risk information, this methodology enables local government personnel and decision makers to quickly respond and monitor natural phenomena that could impact on the local community. This methodology is applied to the January 2015 Malawi Flood case study and result will be discussed along with further recommended developments.
Part I - Analysis for Planning | Pp. 133-150
Building Resilience to Drought in the Sahel by Early Risk Identification and Advices
Patrizio Vignaroli
Agriculture in the Sahel region is characterized by traditional techniques and is strongly dependent on climatic conditions and rainfall. As a consequence of recurrent droughts in East and West Africa, integrated famine Early Warning Systems (EWS) have been established in order to produce and disseminate coherent and integrated information for prevention and management of food crises. Since the early 1990s, analysis tools and simulation models based on satellite meteorological data have been developed to support Multidisciplinary Working Groups (MWG) in cropping season monitoring. However, many of these tools are now obsolete from the IT perspective or ineffective due to unavailability of regularly updated meteorological data. To ensure a long-term sustainability of operational systems for drought risk zones identification CNR-IBIMET has developed 4Crop, a coherent Open Source web-based Spatial Data Infrastructure to treat all input and output data in an interoperable, platform-independent and uniform way. The 4Crop system has been conceived as a multipurpose tool in order to provide different categories of stakeholder, from farmers to policy makers, with effective and useful information for climate risk reduction and drought resilience improvement. Advice to farmers is a fundamental component of prevention that can allow a better adaptation of traditional cropping systems to climatic variability. Past experiences show that agro-meteorological information and weather forecasts can play a key role for food security, reducing the vulnerability of farmers, strengthening rural production systems and increasing crop yields. A participatory and cross-disciplinary approach is essential to build farmers’ trust and to develop effective integration between scientific and local knowledge to increase the rate of dissemination and utilization of advice.
Part I - Analysis for Planning | Pp. 151-167
Rethinking Water Resources Management Under a Climate Change Perspective: From National to Local Level. The Case of Thailand
Francesca Franzetti; Alessandro Pezzoli; Marco Bagliani
Likewise many other countries in Southeast Asia region, Thailand has historically enjoyed relatively abundant water resources. Nevertheless, recently, this flood-prone country’s attention has shifted to drought, as evidence of a globally changing climate. In order to gain better insights of Thai water resources and disaster management, a review of institutions involved and policies promulgated at national level has been conducted. What comes up from this review is that, on paper, Thailand does present a very complex and sophisticated disaster management devise which, apparently, does not seem to be linked in any way to ordinary water resources management, and what is more important is that a gap emerges when it comes to translate a national-level master plan into lower administrative levels (namely at regional, provincial, district and local administrative organization levels). Poor communication, overlapping roles and responsibilities amongst concerned agencies, lack of budget availability and no long-term vision plans are only few of the shortcomings hindering an effective implementation of disaster prevention and mitigation plans. Hence, this chapter seeks to rethink water-related disaster management in Thailand by (re-)shaping the institutional and policy landscapes, envisaging more holistic coordination mechanisms and information flow which would engage all administrative levels (from national level to local level) and concerned stakeholders.
Part I - Analysis for Planning | Pp. 169-195
Relevance and Quality of Climate Planning for Large and Medium-Sized Cities of the Tropics
Maurizio Tiepolo
In the last seven years, the number of plans with climate measures for tropical cities has increased 2.3 times compared to the previous seven years as a result of the initiatives of central and local governments, multi-bilateral development aid and development banks. The plans matter in achieving the 11th United Nations’ Sustainable development goal. Therefore, the objective of this chapter is to ascertain the relevance and quality of climate planning in large and medium-sized cities in the Tropics. The chapter proposes and applies the QCPI-Quality of Climate Plans Index, consisting of 10 indicators (characterization of climate, number, quantification, relevance, potential impact, cost, funding sources, timetable and responsibility of measures, implementation monitoring and reporting). It is revealed that 338 tropical cities currently have a local development, emergency, master, mitigation, adaptation, risk reduction plan or a resilience or smart city strategy. These tools were unquestionably more common in large cities, especially in OCDE and BRICS countries, while they were rare in Developing Countries. Local development plans (Municipal development, general, comprehensive) were the most common in medium-sized cities, along with those with the lowest quality, while stand-alone strategies and plans (resilience, mitigation, sustainable, adaptation), applied mostly in big cities, present much higher quality.
Part II - Decision Making Tools for Climate Planning | Pp. 199-226