Catálogo de publicaciones - libros
Nonlinear Oscillations of Hamiltonian PDEs
Massimiliano Berti
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Partial Differential Equations; Dynamical Systems and Ergodic Theory; Approximations and Expansions; Number Theory; Applications of Mathematics; Mathematical Methods in Physics
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-8176-4680-6
ISBN electrónico
978-0-8176-4681-3
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Birkhäuser Boston 2007
Cobertura temática
Tabla de contenidos
Finite Dimension
Massimiliano Berti
Brain stimulation has been receiving increasing attention as an alternative therapy for epilepsy that cannot be treated by either antiepileptic medication or surgical resection of the epileptogenic focus. The stimulation methods include transcranial magnetic stimulation (TMS) or electrical stimulation by implanted devices of the vagus nerve (VNS), deep brain structures (DBS) (thalamic or hippocampal), cerebellar or cortical areas. TMS is the simplest and least invasive approach. However, the most common epileptogenic areas (mesial temporal structures) probably lie too deep beneath the surface of the skull for effective TMS. The efficacy of VNS in reducing the frequency or severity of seizures is quite variable and depends on many factors which are currently investigated. VNS is well-tolerated and approved in many countries. DBS is much more invasive than either TMS or VNS. Currently, a number of targets for DBS are investigated including caudate, centromedian or anterior thalamic nuclei, and subthalamic nucleus. Direct stimulation of the epileptic cortical focus is another approach to the neuromodulation in epilepsy. Finally, another line of research investigates the usefulness of implantable seizure detection devices. The current chapter presents the most important evidence on the above methods. Furthermore, other important issues are reviewed such as the selection criteria of patients for brain stimulation and the potential role of brain stimulation in the treatment of depression in epileptic patients.
Pp. 1-27
Infinite Dimension
Massimiliano Berti
Brain stimulation has been receiving increasing attention as an alternative therapy for epilepsy that cannot be treated by either antiepileptic medication or surgical resection of the epileptogenic focus. The stimulation methods include transcranial magnetic stimulation (TMS) or electrical stimulation by implanted devices of the vagus nerve (VNS), deep brain structures (DBS) (thalamic or hippocampal), cerebellar or cortical areas. TMS is the simplest and least invasive approach. However, the most common epileptogenic areas (mesial temporal structures) probably lie too deep beneath the surface of the skull for effective TMS. The efficacy of VNS in reducing the frequency or severity of seizures is quite variable and depends on many factors which are currently investigated. VNS is well-tolerated and approved in many countries. DBS is much more invasive than either TMS or VNS. Currently, a number of targets for DBS are investigated including caudate, centromedian or anterior thalamic nuclei, and subthalamic nucleus. Direct stimulation of the epileptic cortical focus is another approach to the neuromodulation in epilepsy. Finally, another line of research investigates the usefulness of implantable seizure detection devices. The current chapter presents the most important evidence on the above methods. Furthermore, other important issues are reviewed such as the selection criteria of patients for brain stimulation and the potential role of brain stimulation in the treatment of depression in epileptic patients.
Pp. 29-57
A Tutorial in Nash–Moser Theory
Massimiliano Berti
Brain stimulation has been receiving increasing attention as an alternative therapy for epilepsy that cannot be treated by either antiepileptic medication or surgical resection of the epileptogenic focus. The stimulation methods include transcranial magnetic stimulation (TMS) or electrical stimulation by implanted devices of the vagus nerve (VNS), deep brain structures (DBS) (thalamic or hippocampal), cerebellar or cortical areas. TMS is the simplest and least invasive approach. However, the most common epileptogenic areas (mesial temporal structures) probably lie too deep beneath the surface of the skull for effective TMS. The efficacy of VNS in reducing the frequency or severity of seizures is quite variable and depends on many factors which are currently investigated. VNS is well-tolerated and approved in many countries. DBS is much more invasive than either TMS or VNS. Currently, a number of targets for DBS are investigated including caudate, centromedian or anterior thalamic nuclei, and subthalamic nucleus. Direct stimulation of the epileptic cortical focus is another approach to the neuromodulation in epilepsy. Finally, another line of research investigates the usefulness of implantable seizure detection devices. The current chapter presents the most important evidence on the above methods. Furthermore, other important issues are reviewed such as the selection criteria of patients for brain stimulation and the potential role of brain stimulation in the treatment of depression in epileptic patients.
Pp. 59-71
Application to the Nonlinear Wave Equation
Massimiliano Berti
Brain stimulation has been receiving increasing attention as an alternative therapy for epilepsy that cannot be treated by either antiepileptic medication or surgical resection of the epileptogenic focus. The stimulation methods include transcranial magnetic stimulation (TMS) or electrical stimulation by implanted devices of the vagus nerve (VNS), deep brain structures (DBS) (thalamic or hippocampal), cerebellar or cortical areas. TMS is the simplest and least invasive approach. However, the most common epileptogenic areas (mesial temporal structures) probably lie too deep beneath the surface of the skull for effective TMS. The efficacy of VNS in reducing the frequency or severity of seizures is quite variable and depends on many factors which are currently investigated. VNS is well-tolerated and approved in many countries. DBS is much more invasive than either TMS or VNS. Currently, a number of targets for DBS are investigated including caudate, centromedian or anterior thalamic nuclei, and subthalamic nucleus. Direct stimulation of the epileptic cortical focus is another approach to the neuromodulation in epilepsy. Finally, another line of research investigates the usefulness of implantable seizure detection devices. The current chapter presents the most important evidence on the above methods. Furthermore, other important issues are reviewed such as the selection criteria of patients for brain stimulation and the potential role of brain stimulation in the treatment of depression in epileptic patients.
Pp. 73-109
Forced Vibrations
Massimiliano Berti
Brain stimulation has been receiving increasing attention as an alternative therapy for epilepsy that cannot be treated by either antiepileptic medication or surgical resection of the epileptogenic focus. The stimulation methods include transcranial magnetic stimulation (TMS) or electrical stimulation by implanted devices of the vagus nerve (VNS), deep brain structures (DBS) (thalamic or hippocampal), cerebellar or cortical areas. TMS is the simplest and least invasive approach. However, the most common epileptogenic areas (mesial temporal structures) probably lie too deep beneath the surface of the skull for effective TMS. The efficacy of VNS in reducing the frequency or severity of seizures is quite variable and depends on many factors which are currently investigated. VNS is well-tolerated and approved in many countries. DBS is much more invasive than either TMS or VNS. Currently, a number of targets for DBS are investigated including caudate, centromedian or anterior thalamic nuclei, and subthalamic nucleus. Direct stimulation of the epileptic cortical focus is another approach to the neuromodulation in epilepsy. Finally, another line of research investigates the usefulness of implantable seizure detection devices. The current chapter presents the most important evidence on the above methods. Furthermore, other important issues are reviewed such as the selection criteria of patients for brain stimulation and the potential role of brain stimulation in the treatment of depression in epileptic patients.
Pp. 111-137