Catálogo de publicaciones - libros
Galois Theory
Steven H. Weintraub
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Field Theory and Polynomials; Group Theory and Generalizations; Number Theory
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-28725-6
ISBN electrónico
978-0-387-28917-5
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer Science+Business Media, Inc. 2006
Cobertura temática
Tabla de contenidos
Introduction to Galois Theory
Steven H. Weintraub
In this section we will proceed informally, neither proving our claims nor even carefully defining our terms. Nevertheless, as you will see in the course of reading this book, everything we say here is absolutely correct. We proceed in this way to show in advance what our main goals are, and hence to motivate our development.
Pp. 1-6
Field Theory and Galois Theory
Steven H. Weintraub
We begin by defining the objects we will be studying.
Pp. 7-43
Development and Applications of Galois Theory
Steven H. Weintraub
We now apply our general theory to the case of symmetric functions. We let be an arbitrary field and set (,⋯, ), the field of rational functions in the variables ,⋯, . Then the symmetric group acts on by permuting ,⋯,
Pp. 45-84
Extensions of the field of Rational Numbers
Steven H. Weintraub
In this section we deal with a number of questions about polynomials in [] related to factorization and irreducibility.
Pp. 85-138
Further Topics in Field Theory
Steven H. Weintraub
We now wish to further investigate questions related to separability and inseparability of algebraic extensions. Recall from Corollary 3.2.3 that every algebraic extension in characteristic 0 is separable, so in this case there is nothing more to be said. char()=>0.
Pp. 139-168