Catálogo de publicaciones - libros

Compartir en
redes sociales


Galois Theory

Steven H. Weintraub

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Field Theory and Polynomials; Group Theory and Generalizations; Number Theory

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-387-28725-6

ISBN electrónico

978-0-387-28917-5

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Science+Business Media, Inc. 2006

Cobertura temática

Tabla de contenidos

Introduction to Galois Theory

Steven H. Weintraub

In this section we will proceed informally, neither proving our claims nor even carefully defining our terms. Nevertheless, as you will see in the course of reading this book, everything we say here is absolutely correct. We proceed in this way to show in advance what our main goals are, and hence to motivate our development.

Pp. 1-6

Field Theory and Galois Theory

Steven H. Weintraub

We begin by defining the objects we will be studying.

Pp. 7-43

Development and Applications of Galois Theory

Steven H. Weintraub

We now apply our general theory to the case of symmetric functions. We let be an arbitrary field and set (,⋯, ), the field of rational functions in the variables ,⋯, . Then the symmetric group acts on by permuting ,⋯,

Pp. 45-84

Extensions of the field of Rational Numbers

Steven H. Weintraub

In this section we deal with a number of questions about polynomials in [] related to factorization and irreducibility.

Pp. 85-138

Further Topics in Field Theory

Steven H. Weintraub

We now wish to further investigate questions related to separability and inseparability of algebraic extensions. Recall from Corollary 3.2.3 that every algebraic extension in characteristic 0 is separable, so in this case there is nothing more to be said. char()=>0.

Pp. 139-168