Catálogo de publicaciones - libros

Compartir en
redes sociales


Computational Welding Mechanics

John A. Goldak Mehdi Akhlaghi

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Mechanical Engineering; Machinery and Machine Elements; Industrial and Production Engineering

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-387-23287-4

ISBN electrónico

978-0-387-23288-1

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Science+Business Media, Inc. 2005

Cobertura temática

Tabla de contenidos

Introduction

John A. Goldak; Mehdi Akhlaghi

This paper introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.

Pp. 1-15

Computer Simulation of Welding Processes

John A. Goldak; Mehdi Akhlaghi

This paper introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.

Pp. 16-69

Thermal Analysis of Welds

John A. Goldak; Mehdi Akhlaghi

This paper introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.

Pp. 71-117

Evolution of Microstructure Depending on Temperature

John A. Goldak; Mehdi Akhlaghi

This paper introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.

Pp. 119-151

Evolution of Microstructure Depending on Deformations

John A. Goldak; Mehdi Akhlaghi

This paper introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.

Pp. 153-198

Carburized and Hydrogen Diffusion Analysis

John A. Goldak; Mehdi Akhlaghi

This paper introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.

Pp. 199-246

Welded Structures and Applications of Welding in Industrial Fields

John A. Goldak; Mehdi Akhlaghi

This paper introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.

Pp. 247-275

Fracture Mechanics

John A. Goldak; Mehdi Akhlaghi

This paper introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.

Pp. 277-303

Input Data for Computational Welding Mechanics

John A. Goldak; Mehdi Akhlaghi

This paper introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.

Pp. 305-313