Catálogo de publicaciones - libros
Computational Welding Mechanics
John A. Goldak Mehdi Akhlaghi
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Mechanical Engineering; Machinery and Machine Elements; Industrial and Production Engineering
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-23287-4
ISBN electrónico
978-0-387-23288-1
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer Science+Business Media, Inc. 2005
Cobertura temática
Tabla de contenidos
Introduction
John A. Goldak; Mehdi Akhlaghi
This paper introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.
Pp. 1-15
Computer Simulation of Welding Processes
John A. Goldak; Mehdi Akhlaghi
This paper introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.
Pp. 16-69
Thermal Analysis of Welds
John A. Goldak; Mehdi Akhlaghi
This paper introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.
Pp. 71-117
Evolution of Microstructure Depending on Temperature
John A. Goldak; Mehdi Akhlaghi
This paper introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.
Pp. 119-151
Evolution of Microstructure Depending on Deformations
John A. Goldak; Mehdi Akhlaghi
This paper introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.
Pp. 153-198
Carburized and Hydrogen Diffusion Analysis
John A. Goldak; Mehdi Akhlaghi
This paper introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.
Pp. 199-246
Welded Structures and Applications of Welding in Industrial Fields
John A. Goldak; Mehdi Akhlaghi
This paper introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.
Pp. 247-275
Fracture Mechanics
John A. Goldak; Mehdi Akhlaghi
This paper introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.
Pp. 277-303
Input Data for Computational Welding Mechanics
John A. Goldak; Mehdi Akhlaghi
This paper introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.
Pp. 305-313