Catálogo de publicaciones - libros
Partial Differential Equations 1: Foundations and Integral Representations
Friedrich Sauvigny
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Partial Differential Equations; Mathematical Methods in Physics
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-34457-5
ISBN electrónico
978-3-540-34459-9
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2006
Cobertura temática
Tabla de contenidos
Differentiation and Integration on Manifolds
Friedrich Sauvigny
A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.
Pp. 1-90
Foundations of Functional Analysis
Friedrich Sauvigny
A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.
Pp. 91-173
Brouwer’s Degree of Mapping with Geometric Applications
Friedrich Sauvigny
A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.
Pp. 175-214
Generalized Analytic Functions
Friedrich Sauvigny
A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.
Pp. 215-296
Potential Theory and Spherical Harmonics
Friedrich Sauvigny
A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.
Pp. 297-354
Linear Partial Differential Equations in ℝ
Friedrich Sauvigny
A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.
Pp. 355-430