Catálogo de publicaciones - libros

Compartir en
redes sociales


Systàmes multi-échelles: Modélisation et simulation

Claude Le Bris

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-25313-6

ISBN electrónico

978-3-540-37671-2

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Tabla de contenidos

Modèles micro-macro pour les solides

Claude Le Bris

A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.

Pp. 1-38

Techniques d’homogénéisation

Claude Le Bris

A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.

Pp. 39-88

Simulation moléculaire

Claude Le Bris

A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.

Pp. 89-127

Modèles micro-macro pour les fluides

Claude Le Bris

A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.

Pp. 129-171

Cinétique chimique

Claude Le Bris

A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.

Pp. 173-198

Vers une unité des approches

Claude Le Bris

A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.

Pp. 199-204