Catálogo de publicaciones - libros

Compartir en
redes sociales


Riemannian Geometry and Geometric Analysis

Jürgen Jost

Fourth Edition.

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-25907-7

ISBN electrónico

978-3-540-28891-6

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Tabla de contenidos

Foundational Material

Jürgen Jost

A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.

Pp. 1-81

De Rham Cohomology and Harmonic Differential Forms

Jürgen Jost

A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.

Pp. 83-103

Parallel Transport, Connections, and Covariant Derivatives

Jürgen Jost

A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.

Pp. 105-170

Geodesics and Jacobi Fields

Jürgen Jost

A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.

Pp. 171-235

Symmetric Spaces and Kähler Manifolds

Jürgen Jost

A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.

Pp. 237-291

Morse Theory and Floer Homology

Jürgen Jost

A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.

Pp. 293-384

Variational Problems from Quantum Field Theory

Jürgen Jost

A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.

Pp. 385-399

Harmonic Maps

Jürgen Jost

A mathematical model of water flow between dialysis fluid in the peritoneal cavity and blood through the capillary wall and homogeneous interstitium driven by high hydrostatic and osmotic pressure of dialysis fluid is formulated. The model is based on nonlinear equations of reaction-diffusion-convection type. Numerical simulations provide the distribution profiles for hydrostatic pressure, glucose concentration, and water flux in the tissue for different times from the infusion of dialysis fluid into the peritoneal cavity for different transport parameters that represent clinical treatments of peritoneal dialysis.

Pp. 401-530