Catálogo de publicaciones - libros

Compartir en
redes sociales


Algorithmic Information Theory: Mathematics of Digital Information

Peter Seibt

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-33218-3

ISBN electrónico

978-3-540-33219-0

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Berlin Heidelberg 2006

Cobertura temática

Tabla de contenidos

Data Compaction

Peter Seibt

Humans learn from other humans – and intelligent nodes of a distributed system operating in a dynamic environment (e.g., robots, smart sensors, or software agents) should do the same! Humans do not only learn by communicating facts but also by exchanging rules. The latter can be seen as a more generic, abstract kind of knowledge. We refer to these two kinds of knowledge as “descriptive” and “functional” knowledge, respectively. In a dynamic environment, where new knowledge arises or old knowledge becomes obsolete, intelligent nodes must adapt on-line to their local environment by means of self-learning mechanisms. If they exchange functional knowledge in addition to descriptive knowledge, they will efficiently be enabled to cope with a particular phenomenon before they observe this phenomenon in their local environment, for instance. In this article, we present an architecture of so-called organic nodes that face a classification problem. We show how a need for new functional knowledge is detected, how new rules are determined, and how the exchange of locally acquired rules within a network of organic nodes leads to a certain kind of self-optimization of the overall system. We show the potential of our methods using an artificial scenario and a real-world scenario from the field of intrusion detection in computer networks.

Pp. 5-48

Cryptography

Peter Seibt

Humans learn from other humans – and intelligent nodes of a distributed system operating in a dynamic environment (e.g., robots, smart sensors, or software agents) should do the same! Humans do not only learn by communicating facts but also by exchanging rules. The latter can be seen as a more generic, abstract kind of knowledge. We refer to these two kinds of knowledge as “descriptive” and “functional” knowledge, respectively. In a dynamic environment, where new knowledge arises or old knowledge becomes obsolete, intelligent nodes must adapt on-line to their local environment by means of self-learning mechanisms. If they exchange functional knowledge in addition to descriptive knowledge, they will efficiently be enabled to cope with a particular phenomenon before they observe this phenomenon in their local environment, for instance. In this article, we present an architecture of so-called organic nodes that face a classification problem. We show how a need for new functional knowledge is detected, how new rules are determined, and how the exchange of locally acquired rules within a network of organic nodes leads to a certain kind of self-optimization of the overall system. We show the potential of our methods using an artificial scenario and a real-world scenario from the field of intrusion detection in computer networks.

Pp. 49-169

Information Theory and Signal Theory: Sampling and Reconstruction

Peter Seibt

Humans learn from other humans – and intelligent nodes of a distributed system operating in a dynamic environment (e.g., robots, smart sensors, or software agents) should do the same! Humans do not only learn by communicating facts but also by exchanging rules. The latter can be seen as a more generic, abstract kind of knowledge. We refer to these two kinds of knowledge as “descriptive” and “functional” knowledge, respectively. In a dynamic environment, where new knowledge arises or old knowledge becomes obsolete, intelligent nodes must adapt on-line to their local environment by means of self-learning mechanisms. If they exchange functional knowledge in addition to descriptive knowledge, they will efficiently be enabled to cope with a particular phenomenon before they observe this phenomenon in their local environment, for instance. In this article, we present an architecture of so-called organic nodes that face a classification problem. We show how a need for new functional knowledge is detected, how new rules are determined, and how the exchange of locally acquired rules within a network of organic nodes leads to a certain kind of self-optimization of the overall system. We show the potential of our methods using an artificial scenario and a real-world scenario from the field of intrusion detection in computer networks.

Pp. 171-219

Error Control Codes

Peter Seibt

Humans learn from other humans – and intelligent nodes of a distributed system operating in a dynamic environment (e.g., robots, smart sensors, or software agents) should do the same! Humans do not only learn by communicating facts but also by exchanging rules. The latter can be seen as a more generic, abstract kind of knowledge. We refer to these two kinds of knowledge as “descriptive” and “functional” knowledge, respectively. In a dynamic environment, where new knowledge arises or old knowledge becomes obsolete, intelligent nodes must adapt on-line to their local environment by means of self-learning mechanisms. If they exchange functional knowledge in addition to descriptive knowledge, they will efficiently be enabled to cope with a particular phenomenon before they observe this phenomenon in their local environment, for instance. In this article, we present an architecture of so-called organic nodes that face a classification problem. We show how a need for new functional knowledge is detected, how new rules are determined, and how the exchange of locally acquired rules within a network of organic nodes leads to a certain kind of self-optimization of the overall system. We show the potential of our methods using an artificial scenario and a real-world scenario from the field of intrusion detection in computer networks.

Pp. 221-266

Data Reduction: Lossy Compression

Peter Seibt

Humans learn from other humans – and intelligent nodes of a distributed system operating in a dynamic environment (e.g., robots, smart sensors, or software agents) should do the same! Humans do not only learn by communicating facts but also by exchanging rules. The latter can be seen as a more generic, abstract kind of knowledge. We refer to these two kinds of knowledge as “descriptive” and “functional” knowledge, respectively. In a dynamic environment, where new knowledge arises or old knowledge becomes obsolete, intelligent nodes must adapt on-line to their local environment by means of self-learning mechanisms. If they exchange functional knowledge in addition to descriptive knowledge, they will efficiently be enabled to cope with a particular phenomenon before they observe this phenomenon in their local environment, for instance. In this article, we present an architecture of so-called organic nodes that face a classification problem. We show how a need for new functional knowledge is detected, how new rules are determined, and how the exchange of locally acquired rules within a network of organic nodes leads to a certain kind of self-optimization of the overall system. We show the potential of our methods using an artificial scenario and a real-world scenario from the field of intrusion detection in computer networks.

Pp. 267-433