Catálogo de publicaciones - libros

Compartir en
redes sociales


Classical Geometries in Modern Contexts: Geometry of Real Inner Product Spaces

Walter Benz

Second Edition.

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Geometry; Mathematical Methods in Physics

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-7643-8540-8

ISBN electrónico

978-3-7643-8541-5

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Birkhäuser Verlag AG 2007

Tabla de contenidos

Translation Groups

Walter Benz

A () is a real vector space together with a mapping : × → ℝ satisfying for all ∈ and λ ∈ ℝ. Concerning the notation : × → ℝ and others we shall use later on, see the section of this book. Instead of () we will write or, occasionally, . The laws above are then the following: for all ∈ , λ ∈ ℝ, and := > 0 for all ∈ {0}. Instead of () we mostly will speak of , hence tacitly assuming that is equipped with a fixed , i.e. with a fixed : → ℝ satisfying rules (i), (ii), (iii), (iv).

Pp. 1-36

Euclidean and Hyperbolic Geometry

Walter Benz

designates again an arbitrary real inner product space containing two linearly independent elements. As throughout the whole book, we do not exclude the case that there exists an infinite and linearly independent subset of .

Pp. 37-92

Sphere Geometries of Möbius and Lie

Walter Benz

Also in this chapter denotes a real inner product space of arbitrary (finite or infinite) dimension ≥ 2.

Pp. 93-174

Lorentz Transformations

Walter Benz

As in the chapters before, denotes a real inner product space of arbitrary (finite or infinite) dimension ≥ 2.

Pp. 175-229

-Projective Mappings, Isomorphism Theorems

Walter Benz

Let () and () be arbitrary real inner product spaces each containing at least two linearly independent elements. However, as in the earlier chapters we do not exclude the case that there exist infinite linearly independent subsets of or . One of the important results of this chapter is that the hyperbolic geometries (()), (()) over = (), = (), respectively, the group of hyperbolic motions, are isomorphic (see p. 16f) if, and only if, () and () are isomorphic (see p. 1f).

Pp. 231-263