Catálogo de publicaciones - libros
Classical Geometries in Modern Contexts: Geometry of Real Inner Product Spaces
Walter Benz
Second Edition.
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Geometry; Mathematical Methods in Physics
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-7643-8540-8
ISBN electrónico
978-3-7643-8541-5
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Birkhäuser Verlag AG 2007
Cobertura temática
Tabla de contenidos
Translation Groups
Walter Benz
A () is a real vector space together with a mapping : × → ℝ satisfying for all ∈ and λ ∈ ℝ. Concerning the notation : × → ℝ and others we shall use later on, see the section of this book. Instead of () we will write or, occasionally, . The laws above are then the following: for all ∈ , λ ∈ ℝ, and := > 0 for all ∈ {0}. Instead of () we mostly will speak of , hence tacitly assuming that is equipped with a fixed , i.e. with a fixed : → ℝ satisfying rules (i), (ii), (iii), (iv).
Pp. 1-36
Euclidean and Hyperbolic Geometry
Walter Benz
designates again an arbitrary real inner product space containing two linearly independent elements. As throughout the whole book, we do not exclude the case that there exists an infinite and linearly independent subset of .
Pp. 37-92
Sphere Geometries of Möbius and Lie
Walter Benz
Also in this chapter denotes a real inner product space of arbitrary (finite or infinite) dimension ≥ 2.
Pp. 93-174
Lorentz Transformations
Walter Benz
As in the chapters before, denotes a real inner product space of arbitrary (finite or infinite) dimension ≥ 2.
Pp. 175-229
-Projective Mappings, Isomorphism Theorems
Walter Benz
Let () and () be arbitrary real inner product spaces each containing at least two linearly independent elements. However, as in the earlier chapters we do not exclude the case that there exist infinite linearly independent subsets of or . One of the important results of this chapter is that the hyperbolic geometries (()), (()) over = (), = (), respectively, the group of hyperbolic motions, are isomorphic (see p. 16f) if, and only if, () and () are isomorphic (see p. 1f).
Pp. 231-263