Catálogo de publicaciones - libros

Compartir en
redes sociales


Tubazioni in polietilene per il trasporto di acqua: Manuale per la progettazione, la posa e la gestione delle reti idriche

A. Pavan R. Frassine

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-88-470-0268-5

ISBN electrónico

978-88-470-0356-9

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Italia, Milano 2005

Cobertura temática

Tabla de contenidos

Introduzione

A. Pavan; R. Frassine

This chapter reports the development of the pneumatic components that we used for all robots in this book. The choice for pneumatic actuation has advantages as well as drawbacks compared to actuation with electric DC motors. The advantage is the inherent compliance of the McKibben muscles (Section 3.1). The good match between the compliant McKibben muscles and the concept of passive dynamic walking was the main argument in favor of the choice for pneumatics. The main drawback is the lack of sufficiently lightweight commercially available components, which means that many of the components must be specially developed for the research project (Section 3.2). A second drawback is the difficulty of implementing high-bandwidth control, which may be a reason for us to switch to electric DC motors for our future prototypes. However, for the phasic (i.e. once-per-step) actuation that we have implemented in all robots in this book, the pneumatic system is a satisfactory choice (Section 3.3). The complete, autonomous pneumatic system can successfully power a biped robot as demonstrated with the prototype ‘Baps’ (Section 3.4). The content of this chapter is based on four of our papers [157, 159, 158, 186].

Pp. 1-3

Il polietilene nel trasporto di acqua

A. Pavan; R. Frassine

This chapter reports the development of the pneumatic components that we used for all robots in this book. The choice for pneumatic actuation has advantages as well as drawbacks compared to actuation with electric DC motors. The advantage is the inherent compliance of the McKibben muscles (Section 3.1). The good match between the compliant McKibben muscles and the concept of passive dynamic walking was the main argument in favor of the choice for pneumatics. The main drawback is the lack of sufficiently lightweight commercially available components, which means that many of the components must be specially developed for the research project (Section 3.2). A second drawback is the difficulty of implementing high-bandwidth control, which may be a reason for us to switch to electric DC motors for our future prototypes. However, for the phasic (i.e. once-per-step) actuation that we have implemented in all robots in this book, the pneumatic system is a satisfactory choice (Section 3.3). The complete, autonomous pneumatic system can successfully power a biped robot as demonstrated with the prototype ‘Baps’ (Section 3.4). The content of this chapter is based on four of our papers [157, 159, 158, 186].

Pp. 5-17

Ciclo di produzione

A. Pavan; R. Frassine

This chapter reports the development of the pneumatic components that we used for all robots in this book. The choice for pneumatic actuation has advantages as well as drawbacks compared to actuation with electric DC motors. The advantage is the inherent compliance of the McKibben muscles (Section 3.1). The good match between the compliant McKibben muscles and the concept of passive dynamic walking was the main argument in favor of the choice for pneumatics. The main drawback is the lack of sufficiently lightweight commercially available components, which means that many of the components must be specially developed for the research project (Section 3.2). A second drawback is the difficulty of implementing high-bandwidth control, which may be a reason for us to switch to electric DC motors for our future prototypes. However, for the phasic (i.e. once-per-step) actuation that we have implemented in all robots in this book, the pneumatic system is a satisfactory choice (Section 3.3). The complete, autonomous pneumatic system can successfully power a biped robot as demonstrated with the prototype ‘Baps’ (Section 3.4). The content of this chapter is based on four of our papers [157, 159, 158, 186].

Pp. 19-24

Progettazione della tubazione

A. Pavan; R. Frassine

This chapter reports the development of the pneumatic components that we used for all robots in this book. The choice for pneumatic actuation has advantages as well as drawbacks compared to actuation with electric DC motors. The advantage is the inherent compliance of the McKibben muscles (Section 3.1). The good match between the compliant McKibben muscles and the concept of passive dynamic walking was the main argument in favor of the choice for pneumatics. The main drawback is the lack of sufficiently lightweight commercially available components, which means that many of the components must be specially developed for the research project (Section 3.2). A second drawback is the difficulty of implementing high-bandwidth control, which may be a reason for us to switch to electric DC motors for our future prototypes. However, for the phasic (i.e. once-per-step) actuation that we have implemented in all robots in this book, the pneumatic system is a satisfactory choice (Section 3.3). The complete, autonomous pneumatic system can successfully power a biped robot as demonstrated with the prototype ‘Baps’ (Section 3.4). The content of this chapter is based on four of our papers [157, 159, 158, 186].

Pp. 25-85

Giunzioni

A. Pavan; R. Frassine

This chapter reports the development of the pneumatic components that we used for all robots in this book. The choice for pneumatic actuation has advantages as well as drawbacks compared to actuation with electric DC motors. The advantage is the inherent compliance of the McKibben muscles (Section 3.1). The good match between the compliant McKibben muscles and the concept of passive dynamic walking was the main argument in favor of the choice for pneumatics. The main drawback is the lack of sufficiently lightweight commercially available components, which means that many of the components must be specially developed for the research project (Section 3.2). A second drawback is the difficulty of implementing high-bandwidth control, which may be a reason for us to switch to electric DC motors for our future prototypes. However, for the phasic (i.e. once-per-step) actuation that we have implemented in all robots in this book, the pneumatic system is a satisfactory choice (Section 3.3). The complete, autonomous pneumatic system can successfully power a biped robot as demonstrated with the prototype ‘Baps’ (Section 3.4). The content of this chapter is based on four of our papers [157, 159, 158, 186].

Pp. 87-109

Tecniche di posa

A. Pavan; R. Frassine

This chapter reports the development of the pneumatic components that we used for all robots in this book. The choice for pneumatic actuation has advantages as well as drawbacks compared to actuation with electric DC motors. The advantage is the inherent compliance of the McKibben muscles (Section 3.1). The good match between the compliant McKibben muscles and the concept of passive dynamic walking was the main argument in favor of the choice for pneumatics. The main drawback is the lack of sufficiently lightweight commercially available components, which means that many of the components must be specially developed for the research project (Section 3.2). A second drawback is the difficulty of implementing high-bandwidth control, which may be a reason for us to switch to electric DC motors for our future prototypes. However, for the phasic (i.e. once-per-step) actuation that we have implemented in all robots in this book, the pneumatic system is a satisfactory choice (Section 3.3). The complete, autonomous pneumatic system can successfully power a biped robot as demonstrated with the prototype ‘Baps’ (Section 3.4). The content of this chapter is based on four of our papers [157, 159, 158, 186].

Pp. 111-125

Capitolato d’opera e collaudo

A. Pavan; R. Frassine

This chapter reports the development of the pneumatic components that we used for all robots in this book. The choice for pneumatic actuation has advantages as well as drawbacks compared to actuation with electric DC motors. The advantage is the inherent compliance of the McKibben muscles (Section 3.1). The good match between the compliant McKibben muscles and the concept of passive dynamic walking was the main argument in favor of the choice for pneumatics. The main drawback is the lack of sufficiently lightweight commercially available components, which means that many of the components must be specially developed for the research project (Section 3.2). A second drawback is the difficulty of implementing high-bandwidth control, which may be a reason for us to switch to electric DC motors for our future prototypes. However, for the phasic (i.e. once-per-step) actuation that we have implemented in all robots in this book, the pneumatic system is a satisfactory choice (Section 3.3). The complete, autonomous pneumatic system can successfully power a biped robot as demonstrated with the prototype ‘Baps’ (Section 3.4). The content of this chapter is based on four of our papers [157, 159, 158, 186].

Pp. 127-132

Esercizio, manutenzione, e riabilitazione delle reti

A. Pavan; R. Frassine

This chapter reports the development of the pneumatic components that we used for all robots in this book. The choice for pneumatic actuation has advantages as well as drawbacks compared to actuation with electric DC motors. The advantage is the inherent compliance of the McKibben muscles (Section 3.1). The good match between the compliant McKibben muscles and the concept of passive dynamic walking was the main argument in favor of the choice for pneumatics. The main drawback is the lack of sufficiently lightweight commercially available components, which means that many of the components must be specially developed for the research project (Section 3.2). A second drawback is the difficulty of implementing high-bandwidth control, which may be a reason for us to switch to electric DC motors for our future prototypes. However, for the phasic (i.e. once-per-step) actuation that we have implemented in all robots in this book, the pneumatic system is a satisfactory choice (Section 3.3). The complete, autonomous pneumatic system can successfully power a biped robot as demonstrated with the prototype ‘Baps’ (Section 3.4). The content of this chapter is based on four of our papers [157, 159, 158, 186].

Pp. 133-144

Vantaggi delle reti in polietilene

A. Pavan; R. Frassine

This chapter reports the development of the pneumatic components that we used for all robots in this book. The choice for pneumatic actuation has advantages as well as drawbacks compared to actuation with electric DC motors. The advantage is the inherent compliance of the McKibben muscles (Section 3.1). The good match between the compliant McKibben muscles and the concept of passive dynamic walking was the main argument in favor of the choice for pneumatics. The main drawback is the lack of sufficiently lightweight commercially available components, which means that many of the components must be specially developed for the research project (Section 3.2). A second drawback is the difficulty of implementing high-bandwidth control, which may be a reason for us to switch to electric DC motors for our future prototypes. However, for the phasic (i.e. once-per-step) actuation that we have implemented in all robots in this book, the pneumatic system is a satisfactory choice (Section 3.3). The complete, autonomous pneumatic system can successfully power a biped robot as demonstrated with the prototype ‘Baps’ (Section 3.4). The content of this chapter is based on four of our papers [157, 159, 158, 186].

Pp. 145-152