Catálogo de publicaciones - libros

Compartir en
redes sociales


Urological Emergencies in Clinical Practice

Hashim Hashim Nigel C. Cowan John Reynard

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Urology; General Practice / Family Medicine; Emergency Medicine; Primary Care Medicine

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-85233-811-4

ISBN electrónico

978-1-84628-101-3

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag London Limited 2005

Tabla de contenidos

Presenting Symptoms of Urological Emergencies

Hashim Hashim; John Reynard

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 1-8

Lower Urinary Tract Emergencies

John Reynard

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 9-16

Nontraumatic Renal Emergencies

John Reynard

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 17-44

Other Infective Urological Emergencies

Hashim Hashim; John Reynard

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 45-53

Traumatic Urological Emergencies

John Reynard

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 54-124

Scrotal and Genital Emergencies

John Reynard; Hashim Hashim

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 125-140

Postoperative Emergencies After Urological Surgery

Hashim Hashim; John Reynard

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 141-150

Ureteric Colic in Pregnancy

John Reynard

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 151-159

Management of Urological Neoplastic Conditions Presenting as Emergencies

John Reynard; Hashim Hashim

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 160-166

Common Emergency Urological Procedures

John Reynard; Nigel Cowan

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 167-181