Catálogo de publicaciones - libros
Methods for Constructing Exact Solutions of Partial Differential Equations: Mathematical and Analytical Techniques with Applications to Engineering
S. V. Meleshko
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-25060-1
ISBN electrónico
978-0-387-25265-0
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer Science+Business Media, Inc. 2005
Cobertura temática
Tabla de contenidos
Equations with One Dependent Function
S. V. Meleshko
In the previous chapters I described observational research projects that can be done using equipment that is commonly available in the amateur astronomer’s toolkit, or which can be added at modest expense. I avoided projects that require the use of math beyond standard high-school algebra. There are, of course, valuable projects that go outside these arbitrary boundaries. The purpose of this chapter is to identify additional projects that may be of interest to the amateur researcher. If you are willing to invest in some specialized equipment, or do some more complex math, then these projects can be brought within the boundaries of your universe. The equipment needed for some of them is likely to cost you a couple of thousand dollars, and may also require that you do some custom design, construction, and de-bugging. Depending on your budget and your enthusiasm for a particular area of research, these can be extremely rewarding investments in your hobby.
Pp. 1-44
Systems of Equations
S. V. Meleshko
In the previous chapters I described observational research projects that can be done using equipment that is commonly available in the amateur astronomer’s toolkit, or which can be added at modest expense. I avoided projects that require the use of math beyond standard high-school algebra. There are, of course, valuable projects that go outside these arbitrary boundaries. The purpose of this chapter is to identify additional projects that may be of interest to the amateur researcher. If you are willing to invest in some specialized equipment, or do some more complex math, then these projects can be brought within the boundaries of your universe. The equipment needed for some of them is likely to cost you a couple of thousand dollars, and may also require that you do some custom design, construction, and de-bugging. Depending on your budget and your enthusiasm for a particular area of research, these can be extremely rewarding investments in your hobby.
Pp. 45-66
Method of the Degenerate Hodograph
S. V. Meleshko
In the previous chapters I described observational research projects that can be done using equipment that is commonly available in the amateur astronomer’s toolkit, or which can be added at modest expense. I avoided projects that require the use of math beyond standard high-school algebra. There are, of course, valuable projects that go outside these arbitrary boundaries. The purpose of this chapter is to identify additional projects that may be of interest to the amateur researcher. If you are willing to invest in some specialized equipment, or do some more complex math, then these projects can be brought within the boundaries of your universe. The equipment needed for some of them is likely to cost you a couple of thousand dollars, and may also require that you do some custom design, construction, and de-bugging. Depending on your budget and your enthusiasm for a particular area of research, these can be extremely rewarding investments in your hobby.
Pp. 67-130
Method of Differential Constraints
S. V. Meleshko
In the previous chapters I described observational research projects that can be done using equipment that is commonly available in the amateur astronomer’s toolkit, or which can be added at modest expense. I avoided projects that require the use of math beyond standard high-school algebra. There are, of course, valuable projects that go outside these arbitrary boundaries. The purpose of this chapter is to identify additional projects that may be of interest to the amateur researcher. If you are willing to invest in some specialized equipment, or do some more complex math, then these projects can be brought within the boundaries of your universe. The equipment needed for some of them is likely to cost you a couple of thousand dollars, and may also require that you do some custom design, construction, and de-bugging. Depending on your budget and your enthusiasm for a particular area of research, these can be extremely rewarding investments in your hobby.
Pp. 131-168
Invariant and Partially Invariant Solutions
S. V. Meleshko
In the previous chapters I described observational research projects that can be done using equipment that is commonly available in the amateur astronomer’s toolkit, or which can be added at modest expense. I avoided projects that require the use of math beyond standard high-school algebra. There are, of course, valuable projects that go outside these arbitrary boundaries. The purpose of this chapter is to identify additional projects that may be of interest to the amateur researcher. If you are willing to invest in some specialized equipment, or do some more complex math, then these projects can be brought within the boundaries of your universe. The equipment needed for some of them is likely to cost you a couple of thousand dollars, and may also require that you do some custom design, construction, and de-bugging. Depending on your budget and your enthusiasm for a particular area of research, these can be extremely rewarding investments in your hobby.
Pp. 169-248
Symmetries of Equations with Nonlocal Operators
S. V. Meleshko
In the previous chapters I described observational research projects that can be done using equipment that is commonly available in the amateur astronomer’s toolkit, or which can be added at modest expense. I avoided projects that require the use of math beyond standard high-school algebra. There are, of course, valuable projects that go outside these arbitrary boundaries. The purpose of this chapter is to identify additional projects that may be of interest to the amateur researcher. If you are willing to invest in some specialized equipment, or do some more complex math, then these projects can be brought within the boundaries of your universe. The equipment needed for some of them is likely to cost you a couple of thousand dollars, and may also require that you do some custom design, construction, and de-bugging. Depending on your budget and your enthusiasm for a particular area of research, these can be extremely rewarding investments in your hobby.
Pp. 249-285
Symbolic Computer Calculations
S. V. Meleshko
In the previous chapters I described observational research projects that can be done using equipment that is commonly available in the amateur astronomer’s toolkit, or which can be added at modest expense. I avoided projects that require the use of math beyond standard high-school algebra. There are, of course, valuable projects that go outside these arbitrary boundaries. The purpose of this chapter is to identify additional projects that may be of interest to the amateur researcher. If you are willing to invest in some specialized equipment, or do some more complex math, then these projects can be brought within the boundaries of your universe. The equipment needed for some of them is likely to cost you a couple of thousand dollars, and may also require that you do some custom design, construction, and de-bugging. Depending on your budget and your enthusiasm for a particular area of research, these can be extremely rewarding investments in your hobby.
Pp. 287-330
Appendix
S. V. Meleshko
In the previous chapters I described observational research projects that can be done using equipment that is commonly available in the amateur astronomer’s toolkit, or which can be added at modest expense. I avoided projects that require the use of math beyond standard high-school algebra. There are, of course, valuable projects that go outside these arbitrary boundaries. The purpose of this chapter is to identify additional projects that may be of interest to the amateur researcher. If you are willing to invest in some specialized equipment, or do some more complex math, then these projects can be brought within the boundaries of your universe. The equipment needed for some of them is likely to cost you a couple of thousand dollars, and may also require that you do some custom design, construction, and de-bugging. Depending on your budget and your enthusiasm for a particular area of research, these can be extremely rewarding investments in your hobby.
Pp. 331-338