Catálogo de publicaciones - libros

Compartir en
redes sociales


Solar Activity and Earth's Climate

Rasmus E. Benestad

Second Edition.

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-30620-7

ISBN electrónico

978-3-540-30621-4

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Praxis Publishing Ltd, Chichester, UK 2006

Tabla de contenidos

Introduction

Rasmus E. Benestad

This work presents the application of the omni-aiNet algorithm - an immune-inspired algorithm originally developed to solve single and multiobjective optimization problems - to the construction of phylogenetic trees. The main goal of this work is to automatically evolve a population of phylogenetic unrooted trees, possibly with distinct topologies, by minimizing at the same time the minimal evolution and the mean-squared error criteria. The obtained set of phylogenetic trees contains non-dominated individuals that form the Pareto front and that represent the trade-off of the two conflicting objectives. The proposal of multiple non-dominated solutions in a single run gives to the user the possibility of having distinct explanations for the difference observed in the terminal nodes of the tree, and also indicates the restrictive feedback provided by the individual application of well-known algorithms for phylogenetic reconstruction that takes into account both optimization criteria, like Neighbor Joining.

Pp. 1-6

Solar observations

Rasmus E. Benestad

This work presents the application of the omni-aiNet algorithm - an immune-inspired algorithm originally developed to solve single and multiobjective optimization problems - to the construction of phylogenetic trees. The main goal of this work is to automatically evolve a population of phylogenetic unrooted trees, possibly with distinct topologies, by minimizing at the same time the minimal evolution and the mean-squared error criteria. The obtained set of phylogenetic trees contains non-dominated individuals that form the Pareto front and that represent the trade-off of the two conflicting objectives. The proposal of multiple non-dominated solutions in a single run gives to the user the possibility of having distinct explanations for the difference observed in the terminal nodes of the tree, and also indicates the restrictive feedback provided by the individual application of well-known algorithms for phylogenetic reconstruction that takes into account both optimization criteria, like Neighbor Joining.

Pp. 7-27

The physical properties of the Sun

Rasmus E. Benestad

This work presents the application of the omni-aiNet algorithm - an immune-inspired algorithm originally developed to solve single and multiobjective optimization problems - to the construction of phylogenetic trees. The main goal of this work is to automatically evolve a population of phylogenetic unrooted trees, possibly with distinct topologies, by minimizing at the same time the minimal evolution and the mean-squared error criteria. The obtained set of phylogenetic trees contains non-dominated individuals that form the Pareto front and that represent the trade-off of the two conflicting objectives. The proposal of multiple non-dominated solutions in a single run gives to the user the possibility of having distinct explanations for the difference observed in the terminal nodes of the tree, and also indicates the restrictive feedback provided by the individual application of well-known algorithms for phylogenetic reconstruction that takes into account both optimization criteria, like Neighbor Joining.

Pp. 29-44

Solar activity

Rasmus E. Benestad

This work presents the application of the omni-aiNet algorithm - an immune-inspired algorithm originally developed to solve single and multiobjective optimization problems - to the construction of phylogenetic trees. The main goal of this work is to automatically evolve a population of phylogenetic unrooted trees, possibly with distinct topologies, by minimizing at the same time the minimal evolution and the mean-squared error criteria. The obtained set of phylogenetic trees contains non-dominated individuals that form the Pareto front and that represent the trade-off of the two conflicting objectives. The proposal of multiple non-dominated solutions in a single run gives to the user the possibility of having distinct explanations for the difference observed in the terminal nodes of the tree, and also indicates the restrictive feedback provided by the individual application of well-known algorithms for phylogenetic reconstruction that takes into account both optimization criteria, like Neighbor Joining.

Pp. 45-87

Earth’s climate

Rasmus E. Benestad

This work presents the application of the omni-aiNet algorithm - an immune-inspired algorithm originally developed to solve single and multiobjective optimization problems - to the construction of phylogenetic trees. The main goal of this work is to automatically evolve a population of phylogenetic unrooted trees, possibly with distinct topologies, by minimizing at the same time the minimal evolution and the mean-squared error criteria. The obtained set of phylogenetic trees contains non-dominated individuals that form the Pareto front and that represent the trade-off of the two conflicting objectives. The proposal of multiple non-dominated solutions in a single run gives to the user the possibility of having distinct explanations for the difference observed in the terminal nodes of the tree, and also indicates the restrictive feedback provided by the individual application of well-known algorithms for phylogenetic reconstruction that takes into account both optimization criteria, like Neighbor Joining.

Pp. 89-148

Solar activity and the stratosphere

Rasmus E. Benestad

This work presents the application of the omni-aiNet algorithm - an immune-inspired algorithm originally developed to solve single and multiobjective optimization problems - to the construction of phylogenetic trees. The main goal of this work is to automatically evolve a population of phylogenetic unrooted trees, possibly with distinct topologies, by minimizing at the same time the minimal evolution and the mean-squared error criteria. The obtained set of phylogenetic trees contains non-dominated individuals that form the Pareto front and that represent the trade-off of the two conflicting objectives. The proposal of multiple non-dominated solutions in a single run gives to the user the possibility of having distinct explanations for the difference observed in the terminal nodes of the tree, and also indicates the restrictive feedback provided by the individual application of well-known algorithms for phylogenetic reconstruction that takes into account both optimization criteria, like Neighbor Joining.

Pp. 149-163

Solar magnetism and Earth’s climate

Rasmus E. Benestad

This work presents the application of the omni-aiNet algorithm - an immune-inspired algorithm originally developed to solve single and multiobjective optimization problems - to the construction of phylogenetic trees. The main goal of this work is to automatically evolve a population of phylogenetic unrooted trees, possibly with distinct topologies, by minimizing at the same time the minimal evolution and the mean-squared error criteria. The obtained set of phylogenetic trees contains non-dominated individuals that form the Pareto front and that represent the trade-off of the two conflicting objectives. The proposal of multiple non-dominated solutions in a single run gives to the user the possibility of having distinct explanations for the difference observed in the terminal nodes of the tree, and also indicates the restrictive feedback provided by the individual application of well-known algorithms for phylogenetic reconstruction that takes into account both optimization criteria, like Neighbor Joining.

Pp. 165-196

A review of solar-terrestrial studies

Rasmus E. Benestad

This work presents the application of the omni-aiNet algorithm - an immune-inspired algorithm originally developed to solve single and multiobjective optimization problems - to the construction of phylogenetic trees. The main goal of this work is to automatically evolve a population of phylogenetic unrooted trees, possibly with distinct topologies, by minimizing at the same time the minimal evolution and the mean-squared error criteria. The obtained set of phylogenetic trees contains non-dominated individuals that form the Pareto front and that represent the trade-off of the two conflicting objectives. The proposal of multiple non-dominated solutions in a single run gives to the user the possibility of having distinct explanations for the difference observed in the terminal nodes of the tree, and also indicates the restrictive feedback provided by the individual application of well-known algorithms for phylogenetic reconstruction that takes into account both optimization criteria, like Neighbor Joining.

Pp. 197-249

Solar activity and regional climate variations

Rasmus E. Benestad

This work presents the application of the omni-aiNet algorithm - an immune-inspired algorithm originally developed to solve single and multiobjective optimization problems - to the construction of phylogenetic trees. The main goal of this work is to automatically evolve a population of phylogenetic unrooted trees, possibly with distinct topologies, by minimizing at the same time the minimal evolution and the mean-squared error criteria. The obtained set of phylogenetic trees contains non-dominated individuals that form the Pareto front and that represent the trade-off of the two conflicting objectives. The proposal of multiple non-dominated solutions in a single run gives to the user the possibility of having distinct explanations for the difference observed in the terminal nodes of the tree, and also indicates the restrictive feedback provided by the individual application of well-known algorithms for phylogenetic reconstruction that takes into account both optimization criteria, like Neighbor Joining.

Pp. 251-276

Synthesis

Rasmus E. Benestad

This work presents the application of the omni-aiNet algorithm - an immune-inspired algorithm originally developed to solve single and multiobjective optimization problems - to the construction of phylogenetic trees. The main goal of this work is to automatically evolve a population of phylogenetic unrooted trees, possibly with distinct topologies, by minimizing at the same time the minimal evolution and the mean-squared error criteria. The obtained set of phylogenetic trees contains non-dominated individuals that form the Pareto front and that represent the trade-off of the two conflicting objectives. The proposal of multiple non-dominated solutions in a single run gives to the user the possibility of having distinct explanations for the difference observed in the terminal nodes of the tree, and also indicates the restrictive feedback provided by the individual application of well-known algorithms for phylogenetic reconstruction that takes into account both optimization criteria, like Neighbor Joining.

Pp. 277-280