Catálogo de publicaciones - libros

Compartir en
redes sociales


Lectures on the Automorphism Groups of Kobayashi-Hyperbolic Manifolds

Alexander Isaev

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Several Complex Variables and Analytic Spaces

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-69151-8

ISBN electrónico

978-3-540-69153-2

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2007

Cobertura temática

Tabla de contenidos

Introduction

Alexander Isaev

Logical modelling and Petri nets constitute two complementary approaches for the dynamical modelling of biological regulatory networks. Leaning on a translation of logical models into standard Petri nets, we propose a formalisation of the notion of circuit functionality in the Petri net framework. This approach is illustrated with the modelling and analysis of a molecular regulatory network involved in the control of Th-lymphocyte differentiation.

Pp. 1-22

The Homogeneous Case

Alexander Isaev

Logical modelling and Petri nets constitute two complementary approaches for the dynamical modelling of biological regulatory networks. Leaning on a translation of logical models into standard Petri nets, we propose a formalisation of the notion of circuit functionality in the Petri net framework. This approach is illustrated with the modelling and analysis of a molecular regulatory network involved in the control of Th-lymphocyte differentiation.

Pp. 23-28

The Case () =

Alexander Isaev

Logical modelling and Petri nets constitute two complementary approaches for the dynamical modelling of biological regulatory networks. Leaning on a translation of logical models into standard Petri nets, we propose a formalisation of the notion of circuit functionality in the Petri net framework. This approach is illustrated with the modelling and analysis of a molecular regulatory network involved in the control of Th-lymphocyte differentiation.

Pp. 29-50

The Case () = - 1, ≥ 3

Alexander Isaev

Logical modelling and Petri nets constitute two complementary approaches for the dynamical modelling of biological regulatory networks. Leaning on a translation of logical models into standard Petri nets, we propose a formalisation of the notion of circuit functionality in the Petri net framework. This approach is illustrated with the modelling and analysis of a molecular regulatory network involved in the control of Th-lymphocyte differentiation.

Pp. 51-60

The Case of (2,3)-Manifolds

Alexander Isaev

Logical modelling and Petri nets constitute two complementary approaches for the dynamical modelling of biological regulatory networks. Leaning on a translation of logical models into standard Petri nets, we propose a formalisation of the notion of circuit functionality in the Petri net framework. This approach is illustrated with the modelling and analysis of a molecular regulatory network involved in the control of Th-lymphocyte differentiation.

Pp. 61-119

Proper Actions

Alexander Isaev

Logical modelling and Petri nets constitute two complementary approaches for the dynamical modelling of biological regulatory networks. Leaning on a translation of logical models into standard Petri nets, we propose a formalisation of the notion of circuit functionality in the Petri net framework. This approach is illustrated with the modelling and analysis of a molecular regulatory network involved in the control of Th-lymphocyte differentiation.

Pp. 121-130