Catálogo de publicaciones - libros

Compartir en
redes sociales


Crosslinking in Materials Science

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-25831-5

ISBN electrónico

978-3-540-31579-7

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Tabla de contenidos

Unsaturated Polyester Resins: Chemistry and Technology

Piotr Penczek; Piotr Czub; Jan Pielichowski

Results of investigations on novel formulations, structure-property relationships, curing, and compositions with fillers and reinforcing fibers (1997--2004) are reviewed with about 200 references to articles and several references to patents. The following topics are considered in particular: novel dibasic acids, glycols, crosslinking monomers, and curing systems, “vinyl ester” resins, fire retardant materials, IPNs and other systems comprising built-in thermoplastic polymers and oligomers with terminal functional groups. Information on unsaturated polyesters manufactured using PET scrap is given. Analytical (mainly spectrometric) methods for studying the chemical structure of crosslinked unsaturated polyester resins are presented. Approaches to the decrease in styrene emission on processing of unsaturated polyester resins are also discussed.

Palabras clave: Unsaturated polyester resins; Reinforced polyesters; Poly(ethylene terephthalate); Vinyl ester resins; Curing .

Pp. 1-95

Crosslinked Polyolefin Foams: Production, Structure, Properties, and Applications

M. A. Rodríguez-Pérez

The purpose of this paper is to review the most significant developments of the last 10 years in the field of crosslinked polyolefin foams. The methods to produce the foams, the relationships between structure and properties, and the main applications of these materials are briefly reviewed. Topics of possible future research are proposed.

Palabras clave: Polyolefin foams; Polyethylene foams; Crosslinking; Foaming agents; Physical properties of foams .

Pp. 97-126

Crosslinking of Vinylidene Fluoride-Containing Fluoropolymers

A. Taguet; B. Ameduri; B. Boutevin

Fluoropolymers are well-known for their good properties in terms of chemical, thermal and electrical stabilities, inertness to acids, bases, solvents and oils, and high resistance to ageing and oxidation. Polyvinylidene fluoride (PVDF) is useful as a homopolymer endowed with interesting characteristics. It contains a high crystallinity rate, but is base sensitive. In addition, VDF can be co- or terpolymerized with several fluorinated monomers, rendering them suitable as elastomers and various examples of synthesis of VDF-copolymers are also presented. This review also focusses on binary and tertiary systems containing VDF. Several curing systems for these VDF-containing copolymers have been investigated, especially diamines and their derivatives, aromatic polyhydroxy compounds, peroxides with coagents, such as triallylisocyanurate, radiations, and thiol-ene systems. The best vulcanizate properties are obtained by a two-step process. First, the material is press cured at different times and temperatures, then, it is post cured in air or under nitrogen at higher temperature and time, and under atmospheric pressure. Poly(VDF- co -HFP) copolymers can react with primary, secondary or tertiary monoamines, but they are mainly crosslinked by diamines such as hexamethylene diamine (HMDA), their carbamates (HMDA-C), and derivatives. A mechanism of crosslinking is identified by Infrared and ^19F NMR spectroscopies, and was evidenced to proceed in three main steps. First, a VDF unit undergoes a dehydrofluorination in the presence of the diamine, then the Michael addition occurs onto the double bonds to form crosslinking, while HF is eliminated from crosslinks in the presence of HF scavengers. The crosslinking mechanism with bisphenols takes place also in three main steps (dehydrofluorination, then substitution of a fluorine atom by a bisphenol, and elimination of HF). The most efficient crosslinking bisphenol is bisphenol AF . A fluoropolymer crosslinked with peroxide/coagent systems needs to be functionalized or halogenated to insure a free radical attack from peroxide. The peroxide is introduced with a coagent that enhances the crosslinking efficiency, and the most efficient one is triallylisocyanurate (TAIC). The crosslinking mechanism of the peroxide/triallylisocyanurate system proceeds in three main steps. The crosslinking reaction occurs from a macroradical arising from the functional or halogenated polymer which is added onto the three double bonds of the TAIC. A fourth way to crosslink VDF-based fluoropolymers deals with high energy radiation, such as X and γ (^60Co or ^137Cs)-rays, and charged particles (β-particles and electrons). Three different reactions are possible after irradiation of a PVDF, and the one that leads to crosslinking is the recombination between two macroradicals. The irradiation dose used on the VDF-based copolymer has an influence on the thermal and mechanical properties. Finally, a crosslinking system also used to vulcanizate hydrogenated elastomers concerns a thiol-ene system which requires a mercapto function born by the VDF-based polymer. Crosslinking occurs via a non-conjugated diene. The mechanical properties (tensile strength, elongation at break, hardness, elongation modulus, compression set resistance …) of the three main crosslinking systems of fluoroelastomers are compared. Finally, the main applications of crosslinked VDF-based fluoropolymers are summarized which include tubing in the aircraft building industry, sealing, tube or irregular-profile items of any dimension, films with good adhesion to metallic or rigid surfaces, multilayer insulator systems for electrical conductors, captors, sensors, and detectors, and membranes for electrochemical applications.

Palabras clave: Crosslinking; VDF-containing copolymers; Amines; Bisphenols; Peroxides/Triallylisocyanurate.

Pp. 127-211