Catálogo de publicaciones - libros
104 Number Theory Problems: From the Training of the USA IMO Team
Titu Andreescu Dorin Andrica Zuming Feng
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-8176-4527-4
ISBN electrónico
978-0-8176-4561-8
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Birkhäuser Boston 2007
Cobertura temática
Tabla de contenidos
Foundations of Number Theory
Back in elementary school, we learned four fundamental operations on numbers (integers), namely, addition (+), subtraction (−), multiplication (× or ·), and division $$ ( \div or/or\tfrac{{}} {c}) $$ . For any two integers a and b , their sum a + b , differences a − b and b − a , and product ab are all integers, while their quotients a ÷ b (or a/b or a/b ) and b ÷ a are not necessarily integers.
Palabras clave: Positive Integer; Number Theory; Prime Divisor; Diophantine Equation; Residue Class.
Pp. 1-74
Introductory Problems
1. Let 1, 4, ... and 9, 16, ... be two arithmetic progressions. The set S is the union of the first 2004 terms of each sequence. How many distinct numbers are in S ?
Pp. 75-82
Advanced Problems
1. Prove that the sum of the squares of 3, 4, 5, or 6 consecutive integers is not a perfect square. Give an example of 11 consecutive positive integers the sum of whose squares is a perfect square.
Palabras clave: Positive Integer; Prime Divisor; Winning Strategy; Balance Scale; Fermat Number.
Pp. 83-90
Solutions to Introductory Problems
1. [AMC10B 2004] Let 1, 4, ... and 9, 16, ... be two arithmetic progressions. The set S is the union of the first 2004 terms of each sequence. How many distinct numbers are in S ?
Palabras clave: Positive Integer; Prime Divisor; Arithmetic Progression; Residue Class; Euclidean Algorithm.
Pp. 91-130
Solutions to Advanced Problems
1. [MOSP 1998] Prove that the sum of the squares of 3, 4, 5, or 6 consecutive integers is not a perfect square. Give an example of 11 consecutive positive integers the sum of whose squares is a perfect square.
Palabras clave: Positive Integer; Induction Hypothesis; Nonnegative Integer; Prime Divisor; Winning Strategy.
Pp. 131-187