Catálogo de publicaciones - libros

Compartir en
redes sociales


104 Number Theory Problems: From the Training of the USA IMO Team

Titu Andreescu Dorin Andrica Zuming Feng

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-8176-4527-4

ISBN electrónico

978-0-8176-4561-8

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Birkhäuser Boston 2007

Cobertura temática

Tabla de contenidos

104 Number Theory Problems

Pp. No disponible

Foundations of Number Theory

Back in elementary school, we learned four fundamental operations on numbers (integers), namely, addition (+), subtraction (−), multiplication (× or ·), and division $$ ( \div or/or\tfrac{{}} {c}) $$ . For any two integers a and b , their sum a + b , differences a − b and b − a , and product ab are all integers, while their quotients a ÷ b (or a/b or a/b ) and b ÷ a are not necessarily integers.

Palabras clave: Positive Integer; Number Theory; Prime Divisor; Diophantine Equation; Residue Class.

Pp. 1-74

Introductory Problems

1. Let 1, 4, ... and 9, 16, ... be two arithmetic progressions. The set S is the union of the first 2004 terms of each sequence. How many distinct numbers are in S ?

Pp. 75-82

Advanced Problems

1. Prove that the sum of the squares of 3, 4, 5, or 6 consecutive integers is not a perfect square. Give an example of 11 consecutive positive integers the sum of whose squares is a perfect square.

Palabras clave: Positive Integer; Prime Divisor; Winning Strategy; Balance Scale; Fermat Number.

Pp. 83-90

Solutions to Introductory Problems

1. [AMC10B 2004] Let 1, 4, ... and 9, 16, ... be two arithmetic progressions. The set S is the union of the first 2004 terms of each sequence. How many distinct numbers are in S ?

Palabras clave: Positive Integer; Prime Divisor; Arithmetic Progression; Residue Class; Euclidean Algorithm.

Pp. 91-130

Solutions to Advanced Problems

1. [MOSP 1998] Prove that the sum of the squares of 3, 4, 5, or 6 consecutive integers is not a perfect square. Give an example of 11 consecutive positive integers the sum of whose squares is a perfect square.

Palabras clave: Positive Integer; Induction Hypothesis; Nonnegative Integer; Prime Divisor; Winning Strategy.

Pp. 131-187