Catálogo de publicaciones - libros

Compartir en
redes sociales


Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments

Vadim S. Anishchenko Vladimir Astakhov Tatjana Vadivasova Alexander Neiman Lutz Schimansky-Geier

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-38164-8

ISBN electrónico

978-3-540-38168-6

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer 2007

Tabla de contenidos

Tutorial

Vadim S. Anishchenko; Vladimir Astakhov; Tatjana Vadivasova; Alexander Neiman; Lutz Schimansky-Geier

The knowledge of nonlinear dynamics is based on the notion of a dynamical system (DS). A DS may be thought of as an object of any nature, whose state evolves in time according to some dynamical law, i.e., as a result of the action of a deterministic evolution operator. Thus, the notion of DS is the result of a certain amount of idealization when random factors inevitably present in any real system are neglected.

Palabras clave: Lyapunov Exponent; Phase Portrait; Unstable Manifold; Chaotic Attractor; Langevin Equation.

Pp. 1-108

Dynamical Chaos

Vadim S. Anishchenko; Vladimir Astakhov; Tatjana Vadivasova; Alexander Neiman; Lutz Schimansky-Geier

A dynamical system (DS) displays its nonlinear properties in different ways with variation of system control parameters. An increase in the influence of nonlinearity causes the dynamical regime to become complicated. Simple attractors in the phase space of a dissipative system are replaced by more complicated ones. Under certain conditions, nonlinearity can lead to the onset of dynamical chaos. Moving along a relevant direction in parameter space, one can observe a set of bifurcations resulting in the appearance of a chaotic attractor. Such typical bifurcation sequences are called the bifurcation mechanisms , or the scenarios of the transition to chaos .

Palabras clave: Lyapunov Exponent; Phase Portrait; Chaotic Attractor; Phase Trajectory; Chaos Synchronization.

Pp. 109-306

Stochastic Dynamics

Vadim S. Anishchenko; Vladimir Astakhov; Tatjana Vadivasova; Alexander Neiman; Lutz Schimansky-Geier

The word “noise” is ordinarily associated with the term “hindrance”. It was traditionally considered that the presence of noise can only make the operation of any system worse. There are well-known classical radio physical problems related to limitations of the sensitivity of amplifiers and a finiteness of the pulse bandwidth of oscillators due to the presence of natural and technical noise [1–3] (cf. Sect. 1.3).

Palabras clave: Noise Intensity; Stochastic Resonance; Stochastic Dynamics; Bistable System; Linear Response Theory.

Pp. 307-443