Catálogo de publicaciones - libros
A Concise Course on Stochastic Partial Differential Equation
Claudia Prévôt Michael Röckner
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Analysis; Partial Differential Equations; Probability Theory and Stochastic Processes
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-70780-6
ISBN electrónico
978-3-540-70781-3
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2007
Cobertura temática
Tabla de contenidos
Motivation, Aims and Examples
These lectures will concentrate on (nonlinear) stochastic partial differential equations (SPDEs) of evolutionary type. All kinds of dynamics with stochastic infuence in nature or man-made complex systems can be modelled by such equations. As we shall see from the examples, at the end of this section the state spaces of their solutions are necessarily infinite dimensional such as spaces of (generalized) functions. In these notes the state spaces, denoted by E , will be mostly separable Hilbert spaces, sometimes separable Banach spaces.
Palabras clave: Evolutionary Type; Noise Term; Separable Hilbert Space; Separable Banach Space; Martingale Measure.
Pp. 1-4
Stochastic Integral in Hilbert Spaces
This chapter is a slight modification of Chap. 1 in [FK01].
Palabras clave: Hilbert Space; Orthonormal Basis; Elementary Process; Wiener Process; Gaussian Random Variable.
Pp. 5-42
Stochastic Differential Equations in Finite Dimensions
This chapter is an extended version of [Kry99, Section 1].
Pp. 43-54
A Class of Stochastic Differential Equations
In this chapter we will present one specific method to solve stochastic differential equations in infinite-dimensional spaces, known as the variational approach . The main criterion for this approach to work is that the coefficients satisfy certain monotonicity assumptions. As the main references for Subsection 4.2 we mention [RRW06] and [KR79], but also one should check the references therein.
Palabras clave: Invariant Measure; Wiener Process; Markov Property; Separable Hilbert Space; Porous Medium Equation.
Pp. 55-103