Catálogo de publicaciones - libros
Título de Acceso Abierto
Deep Learning-Based Machinery Fault Diagnostics
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
process monitoring; dynamics; variable time lag; dynamic autoregressive latent variables model; sintering process; hammerstein output-error systems; auxiliary model; multi-innovation identification theory; fractional-order calculus theory; canonical variate analysis; disturbance detection; power transmission system; k-nearest neighbor analysis; statistical local analysis; intelligent fault diagnosis; stacked pruning sparse denoising autoencoder; convolutional neural network; anti-noise; flywheel fault diagnosis; belief rule base; fuzzy fault tree analysis; Bayesian network; evidential reasoning; aluminum reduction process; alumina concentration; subspace identification; distributed predictive control; spatiotemporal feature fusion; gated recurrent unit; attention mechanism; fault diagnosis; evidential reasoning rule; system modelling; information transformation; parameter optimization; event-triggered control; interval type-2 Takagi–Sugeno fuzzy model; nonlinear networked systems; filter; gearbox fault diagnosis; convolution fusion; state identification; PSO; wavelet mutation; LSSVM; data-driven; operational optimization; case-based reasoning; local outlier factor; abnormal case removal; bearing fault detection; deep residual network; data augmentation; canonical correlation analysis; just-in-time learning; fault detection; high-speed trains; autonomous underwater vehicle; thruster fault diagnostics; fault tolerant control; robust optimization; ocean currents; n/a
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No requiere | Directory of Open access Books |
Información
Tipo de recurso:
libros
ISBN electrónico
978-3-0365-5174-6
País de edición
Suiza