Catálogo de publicaciones - revistas

Compartir en
redes sociales


Advanced Functional Materials

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2001 / hasta dic. 2023 Wiley Online Library

Información

Tipo de recurso:

revistas

ISSN impreso

1616-301X

ISSN electrónico

1616-3028

País de edición

Estados Unidos

Tabla de contenidos

In Situ TEM Studies of the Oxidation of Li Dendrites at High Temperatures

Yanshuai Li; Xiaomei Li; Jianmin Chen; Canying Cai; Wei Tu; Jun Zhao; Yongfu Tang; Liqiang Zhang; Guangwen Zhou; Jianyu HuangORCID

<jats:title>Abstract</jats:title><jats:p>Although lithium (Li) is inert to dry oxygen at room temperature, it reacts with dry oxygen at elevated temperatures, causing thermal runaway and fire hazard in Li metal batteries (LMBs). However, the oxidation mechanism of Li at high temperatures is not explored. Here, real‐time transmission electron microscopy studies of the effect of temperature on the oxidation mechanisms of Li dendrites are reported. The oxidation is controlled by the outward diffusion of Li<jats:sup>+</jats:sup> through the oxide layer (the Wagner oxidation mechanism), forming thin films of Li<jats:sub>2</jats:sub>O comprising nanograins at temperatures between 100 and 140 °C. When the temperature is between 160 and 200 °C, the oxidation product is plate‐like LiOH due to the presence of trace amount of water vapor in the atmosphere. When the temperature is above 300 °C, the oxidation product becomes single crystalline Li<jats:sub>2</jats:sub>O nanocubes. Density function theory calculations reveal the Li oxidation chemistry is controlled by the thermodynamics and kinetics of the interactions between O<jats:sub>2</jats:sub> or H<jats:sub>2</jats:sub>O and Li<jats:sub>2</jats:sub>O at high temperatures. These results provide an important understanding of the microscopic oxidation mechanism of Li at elevated temperatures, which sheds lights on the thermal runaway of LMBs.</jats:p>

Palabras clave: Electrochemistry; Condensed Matter Physics; Biomaterials; Electronic, Optical and Magnetic Materials.

Pp. No disponible

Layering Charged Polymers Enable Highly Integrated High‐Capacity Battery Anodes

Dong‐Yeob Han; Im Kyung Han; Hye Bin Son; Youn Soo Kim; Jaegeon Ryu; Soojin ParkORCID

Palabras clave: Electrochemistry; Condensed Matter Physics; Biomaterials; Electronic, Optical and Magnetic Materials.

Pp. No disponible