Catálogo de publicaciones - tesis

Compartir en
redes sociales


Título de Acceso Abierto

Una inversa a derecha para el operador divergencia en dominios con cúspides

Fernando López García Ricardo G. Durán

publishedVersion.

Resumen/Descripción – provisto por el repositorio digital
En esta tesis estudiamos la existencia de soluciones del problema de la divergencia en dominios con cúspides exteriores. Es sabido que los resultados clásicos en espacios de Sobolev standard, los cuales son una herramienta básica para el análisis variacional de las ecuaciones de Stokes, no valen para este tipo de dominios. Una clase importante de dominios con cúspide exteriores es la de los Hölder-α, con 0 menor α menor 1. Primero, probamos que si Ω es un dominio Hölder-α plano simplemente conexo existen soluciones de div u = f en un espacio de Sobolev con peso apropiado. Los pesos considerados son potencias de la distancia al borde de dominio. Luego, para una clase particular de dominios Hölder-α acotados Ω ⊂ Rn , con cúspides exteriores de dimensión entera m ≤ n − 2, mostramos la existencia de soluciones en espacios de Sobolev con peso de la ecuación de divergencia. Los pesos considerados en este caso son potencias de la distancia a la cúspide. Este resultado es más fuerte que el que involucra la distancia a ∂Ω. También, obtenemos una versión de la desigualdad de Korn con peso para esta clase de dominios y pesos. Las potencias en los pesos de los resultados obtenidos en este trabajo resultan optimas. Como una aplicación de los resultados previos, probamos la existencia y unicidad de soluciones variacionales de las ecuaciones de Stokes en espacios de Sobolev con peso apropiados. Como consecuencia, obtenemos la existencia de una solución (u, p) ∈ H0^1 (Ω)^n × Lr (Ω), con r menor 2 dependiendo de la potencia de la cúspide, donde u denota la velocidad y p la presión. Por otro lado, damos condiciones suficientes para que una potencia de la distancia a un compacto esté en la clase de Muckenhoupt Ap . Este resultado es auxiliar en este trabajo aunque nos parece que tiene interés en sí mismo. Finalmente, definimos nuevos contraejemplos para el problema de la divergencia y la desigualdad de Korn en dominios cuspidales, donde las cúspides no son necesariamente
Palabras clave – provistas por el repositorio digital

OPERADOR DIVERGENCIA; DOMINIOS CON CUSPIDES EXTERIORES; ECUACIONES DE STOKES; DESIGUALDAD DE KORN; ESPACIOS DE SOBOLEV CON PESO; DIVERGENCES OPERATOR; DOMAINS WITH EXTERNAL CUSPS; STOKES EQUATIONS; KORN INEQUALITY; WEIGHTED SOBOLEV SPACES

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No requiere 2010 Biblioteca Digital (FCEN-UBA) (SNRD) acceso abierto

Información

Tipo de recurso:

tesis

Idiomas de la publicación

  • español castellano

País de edición

Argentina

Fecha de publicación

Información sobre licencias CC

https://creativecommons.org/licenses/by/2.5/ar/