Catálogo de publicaciones - tesis

Compartir en
redes sociales


Título de Acceso Abierto

Técnicas basadas en medidas de complejidad para el análisis de señales biomédicas

Juan Felipe Restrepo María Eugenia Torres Jorge Luis Moiola Franco Martín Pessana Luciana De Micco Gastón Schlotthauer

acceptedVersion.

Resumen/Descripción – provisto por el repositorio digital
There exist evidence suggesting that the dynamics of physiological systems is complex and nonlinear. The degree of complexity of the system is linked to normal or pathological states of the organism. It is important to quantitatively measure the complexity of a physiological system from its biomedical signals.The objective is to introduce two different approaches that allow us to characterize the complexity of a system, in particular, in presence of noise. The first one is related with the approximate entropy (ApEn) of a temporal series and the second one with the correlation dimension (D) and correlation entropy (K2). The ApEn measures the regularity osf a time series. The mayor of its problems is related tho the high dependency of the value of its parameters and the noise level. As a solution we have proposed the estimator hmax, that is defined as the value of the scale h at which ApEn achieves its maximum value. We conclude that hmax provides valuable information useful for classification purposes. Furthermore, we have developed an ictal episode detector from EEG signals, and a pathological voice detector. They outperform the results already reported. The second result is related with the estimation of D and K2. We have proposed the noise assisted correlation integral (NCI) and we have shown that the classical and Gaussian correlation integrlas are particular cases of the NCI. Moreover, we have developed the U correlation integral which is able to incorporate information about the embedding dimension in its kernel function, improving the estimation of K2.
Palabras clave – provistas por el repositorio digital

Approximate entropy; Nonlinear dinamics; Correlation dimension; Entropy; Biomedical signals; Dinámicas no lineales; Medidas de complejidad; Señales biomédicas; Integral de correlación; Entropía aproximada; Entropía

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No requiere 2016 Biblioteca Virtual de la Universidad Nacional del Litoral (SNRD) acceso abierto

Información

Tipo de recurso:

tesis

Idiomas de la publicación

  • español castellano

País de edición

Argentina

Fecha de publicación

Cobertura temática