Catálogo de publicaciones - tesis
Título de Acceso Abierto
Operadores en espacios de Lebesgue generalizados
Mauricio Javier Ramseyer Oscar Salinas Hugo Aimar Héctor Cuenya Julián Fernández Bonder Beatriz Viviani
acceptedVersion.
Resumen/Descripción – provisto por el repositorio digital
Variable exponent spaces have been the subject of quite a lot of interest recently. Much of this interest is focused on the study of operators connected with the regularity properties of solutions of problems associated with elasticity, fluid dynamics and image restoration. The main objective of this thesis is to study the behavior of Fractional Integral operator acting on Lp(•) and even more general spaces. To begin, we review the definitions and basic tools of variable exponent spaces. Then, we introduce the spaces Lalpha,p(•), generalizing the classical Lipschitz and tried the boundedess, under necessary and sufficient conditions on the exponent function, from Lp(•) in Lalpha,p(•). To continue, we define the weak Lebesgue spaces with variable exponent and tried the respective boundedess but this time under sufficient conditions only on the exponent function. In a more general way, we study the spaces whose mean oscillations on balls are controlled by a function depending on both the center and the radius of ball, introduced by Eiichi Nakai (1985) that generalize the Lalpha,p(•), we make a studying them and tried a pointwise characterization here. In addition, we analyze under what conditions have a continuous representative. Finally, achieving our goal, we restrict the Fractional Integral in such spaces and dimensions subsequently tested for Riesz transforms.Palabras clave – provistas por el repositorio digital
Riezs Transform; Bounded Mean Oscillation; Pointwise characterization; Exponente Variable; Integral Fraccionaria; Transformada de Riezs; Oscilación Media Acotada; Caracterización Puntual; Variable exponent; Fractional integral
Disponibilidad
| Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
|---|---|---|---|---|
| No requiere | 2013 | Biblioteca Virtual de la Universidad Nacional del Litoral (SNRD) |
|
Información
Tipo de recurso:
tesis
Idiomas de la publicación
- español castellano
País de edición
Argentina
Fecha de publicación
2013-06-07