El aluminio puro se caracteriza por presentar buena resistencia a la corrosión debido a que, cuando se encuentra expuesto al aire o medios acuosos, forma espontáneamente películas de óxido protector. Sin embargo, es demasiado blando para ser utilizado como material de alta resistencia en grandes estructuras. Por ello se han desarrollado aleaciones base aluminio para mejorar sus propiedades específicas. El cobre se utiliza comúnmente como un elemento de aleación porque su presencia en pequeñas cantidades aumenta notablemente la dureza del material resultante. Actualmente, las aleaciones Al-Cu se consideran de gran importancia tecnológica, encontrando numerosas aplicaciones en la industria automotriz, como componente de medios de transporte debido al ahorro de combustible que conlleva la disminución de peso con prestaciones de seguridad similares. Las propiedades mecánicas de muchas aleaciones comerciales de aluminio se desarrollan como resultado de microestructuras heterogéneas, resultado de la cuidadosa adición de aleantes y tratamientos térmicos. Desde el punto de vista de la corrosión localizada, la característica predominante de las microestructuras de las aleaciones es la distribución de partículas de fase secundarias, conocidas como intermetálicos. Así, la estructura formada inmediatamente después de la solidificación determinará las propiedades del producto final. En la producción industrial resulta muy importante aumentar la cantidad de productos de calidad, y esto puede lograrse a través de la comprensión de los procesos de formación de las macroestructuras y microestructuras de solidificación, y de cómo pueden controlarse seleccionando la composición de la aleación y los parámetros del proceso. En esta tesis se estudió la influencia de la variación de la estructura en la resistencia a la corrosión de las aleaciones Al-Cu en soluciones de NaCl, así como también en un medio de interés para la industria, esto es, biodiesel de aceite de soja. Para ello se caracterizó la estructura solidificada de aleaciones Al-Cu con las siguientes composiciones: Al-1%Cu, Al-4,5% Cu, Al-15% Cu y Al-33,2% Cu, determinando la transición de estructura columnar a equiaxial (TCE) por medio del análisis macroestructural y microestructural. Se obtuvieron probetas de cada una de las estructuras de las aleaciones y se emplearon diferentes técnicas electroquímicas para evaluar la resistencia a la corrosión de las mismas en los medios mencionados. Se encontró que la morfología de la microestructura de las aleaciones puede describirse como polífásica, coexistiendo la fase α, rica en aluminio, y la fase θ, correspondiente a la partícula intermetálica Al2Cu. Las mismas se distribuyen de diferente manera, de acuerdo al diagrama de fases, en función a la composición de las aleaciones. Se concluyó que la disminución de la fracción de fase α, a expensas de la región interdendrítica se manifiesta en la disminución de del espaciamiento dendrítico secundario al aumentar el contenido de cobre. El incremento del contenido de cobre, asociado al aumento de la presencia del intermetálico Al2Cu, resultó en una mayor susceptibilidad a la corrosión en las aleaciones estudiadas, en todos los medios. Se concluyó que la morfología microestructural que disminuya las áreas de contacto entre la fase α y el intermetálico Al2Cu, favorecerá la resistencia a la corrosión de las aleaciones Al-Cu, en NaCl. Los valores de las velocidades de corrosión instantáneas obtenidos indicaron una buena resistencia a la corrosión de las aleaciones Al-Cu en biodiesel de soja.