Catálogo de publicaciones - revistas

Compartir en
redes sociales


Nature Physics

Resumen/Descripción – provisto por la editorial en inglés
Nature Physics publishes papers of the highest quality and significance in all areas of physics, pure and applied. The journal content reflects core physics disciplines, but is also open to a broad range of topics whose central theme falls within the bounds of physics. Theoretical physics, particularly where it is pertinent to experiment, also features.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 2012 / hasta dic. 2023 Nature.com

Información

Tipo de recurso:

revistas

ISSN impreso

1745-2473

ISSN electrónico

1745-2481

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Cobertura temática

Tabla de contenidos

Laser spectroscopy of a rovibrational transition in the molecular hydrogen ion $${\mathbf{H}}_{\mathbf{2}}^{\mathbf{+}}$$

M. R. SchenkelORCID; S. AlighanbariORCID; S. SchillerORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

One-ninth magnetization plateau stabilized by spin entanglement in a kagome antiferromagnet

Sungmin Jeon; Dirk WulferdingORCID; Youngsu ChoiORCID; Seungyeol Lee; Kiwan Nam; Kee Hoon KimORCID; Minseong LeeORCID; Tae-Hwan JangORCID; Jae-Hoon ParkORCID; Suheon LeeORCID; Sungkyun ChoiORCID; Chanhyeon Lee; Hiroyuki NojiriORCID; Kwang-Yong ChoiORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Multi-ensemble metrology by programming local rotations with atom movements

Adam L. ShawORCID; Ran FinkelsteinORCID; Richard Bing-Shiun TsaiORCID; Pascal Scholl; Tai Hyun YoonORCID; Joonhee ChoiORCID; Manuel EndresORCID

<jats:title>Abstract</jats:title><jats:p>Current optical atomic clocks do not utilize their resources optimally. In particular, an exponential gain in sensitivity could be achieved if multiple atomic ensembles were to be controlled or read out individually, even without entanglement. However, controlling optical transitions locally remains an outstanding challenge for neutral-atom-based clocks and quantum computing platforms. Here we show arbitrary, single-site addressing for an optical transition via sub-wavelength controlled moves of atoms trapped in tweezers. The scheme is highly robust as it relies only on the relative position changes of tweezers and requires no additional addressing beams. Using this technique, we implement single-shot, dual-quadrature readout of Ramsey interferometry using two atomic ensembles simultaneously, and show an enhancement of the usable interrogation time at a given phase-slip error probability. Finally, we program a sequence that performs local dynamical decoupling during Ramsey evolution to evolve three ensembles with variable phase sensitivities, a key ingredient of optimal clock interrogation. Our results demonstrate the potential of fully programmable quantum optical clocks even without entanglement and could be combined with metrologically useful entangled states in the future.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Probing many-body correlations using quantum-cascade correlation spectroscopy

Lorenzo ScarpelliORCID; Cyril ElouardORCID; Mattias JohnssonORCID; Martina Morassi; Aristide LemaitreORCID; Iacopo CarusottoORCID; Jacqueline BlochORCID; Sylvain RavetsORCID; Maxime Richard; Thomas VolzORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Parallel quantum control meets optical atomic clocks

Simone ColomboORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Emergence of highly coherent two-level systems in a noisy and dense quantum network

A. BeckertORCID; M. Grimm; N. WiliORCID; R. Tschaggelar; G. Jeschke; G. MatmonORCID; S. GerberORCID; M. MüllerORCID; G. AeppliORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Programmable Heisenberg interactions between Floquet qubits

Long B. NguyenORCID; Yosep KimORCID; Akel HashimORCID; Noah GossORCID; Brian MarinelliORCID; Bibek BhandariORCID; Debmalya DasORCID; Ravi K. NaikORCID; John Mark KreikebaumORCID; Andrew N. Jordan; David I. SantiagoORCID; Irfan Siddiqi

<jats:title>Abstract</jats:title><jats:p>The trade-off between robustness and tunability is a central challenge in the pursuit of quantum simulation and fault-tolerant quantum computation. In particular, quantum architectures are often designed to achieve high coherence at the expense of tunability. Many current qubit designs have fixed energy levels and consequently limited types of controllable interactions. Here by adiabatically transforming fixed-frequency superconducting circuits into modifiable Floquet qubits, we demonstrate an XXZ Heisenberg interaction with fully adjustable anisotropy. This interaction model can act as the primitive for an expressive set of quantum operations, but is also the basis for quantum simulations of spin systems. To illustrate the robustness and versatility of our Floquet protocol, we tailor the Heisenberg Hamiltonian and implement two-qubit iSWAP, CZ and SWAP gates with good estimated fidelities. In addition, we implement a Heisenberg interaction between higher energy levels and employ it to construct a three-qubit CCZ gate, also with a competitive fidelity. Our protocol applies to multiple fixed-frequency high-coherence platforms, providing a collection of interactions for high-performance quantum information processing. It also establishes the potential of the Floquet framework as a tool for exploring quantum electrodynamics and optimal control.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. No disponible

A new way to use old codes

Anirudh KrishnaORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Time-Efficient Constant-Space-Overhead Fault-Tolerant Quantum Computation

Hayata YamasakiORCID; Masato KoashiORCID

<jats:title>Abstract</jats:title><jats:p>Scaling up quantum computers to attain substantial speedups over classical computing requires fault tolerance. Conventionally, protocols for fault-tolerant quantum computation demand excessive space overheads by using many physical qubits for each logical qubit. A more recent protocol using quantum analogues of low-density parity-check codes needs only a constant space overhead that does not grow with the number of logical qubits. However, the overhead in the processing time required to implement this protocol grows polynomially with the number of computational steps. To address these problems, here we introduce an alternative approach to constant-space-overhead fault-tolerant quantum computing using a concatenation of multiple small-size quantum codes rather than a single large-size quantum low-density parity-check code. We develop techniques for concatenating different quantum Hamming codes with growing size. As a result, we construct a low-overhead protocol to achieve constant space overhead and only quasi-polylogarithmic time overhead simultaneously. Our protocol is fault tolerant even if a decoder has a non-constant runtime, unlike the existing constant-space-overhead protocol. This code concatenation approach will make possible a large class of quantum speedups with feasibly bounded space overhead yet negligibly short time overhead.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Ferroelectric and spontaneous quantum Hall states in intrinsic rhombohedral trilayer graphene

Felix WintererORCID; Fabian R. GeisenhofORCID; Noelia FernandezORCID; Anna M. SeilerORCID; Fan ZhangORCID; R. Thomas WeitzORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible