Catálogo de publicaciones - revistas

Compartir en
redes sociales


Nature Physics

Resumen/Descripción – provisto por la editorial en inglés
Nature Physics publishes papers of the highest quality and significance in all areas of physics, pure and applied. The journal content reflects core physics disciplines, but is also open to a broad range of topics whose central theme falls within the bounds of physics. Theoretical physics, particularly where it is pertinent to experiment, also features.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 2012 / hasta dic. 2023 Nature.com

Información

Tipo de recurso:

revistas

ISSN impreso

1745-2473

ISSN electrónico

1745-2481

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Cobertura temática

Tabla de contenidos

Coherent backscattering of entangled photon pairs

Mamoon Safadi; Ohad LibORCID; Ho-Chun LinORCID; Chia Wei HsuORCID; Arthur Goetschy; Yaron BrombergORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Publisher Correction: Higher-order organization of multivariate time series

Andrea SantoroORCID; Federico Battiston; Giovanni PetriORCID; Enrico AmicoORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Evidence for lunar tide effects in Earth’s plasmasphere

Chao XiaoORCID; Fei HeORCID; Quanqi ShiORCID; Wenlong LiuORCID; Anmin Tian; Ruilong Guo; Chao YueORCID; Xuzhi Zhou; Yong WeiORCID; I. Jonathan Rae; Alexander W. Degeling; Vassilis AngelopoulosORCID; Emmanuel V. Masongsong; Ji Liu; Qiugang Zong; Suiyan Fu; Zuyin Pu; Xiaoxin Zhang; Tieyan Wang; Huizi Wang; Zhao ZhangORCID

<jats:title>Abstract</jats:title><jats:p>Tides are universal and affect spatially distributed systems, ranging from planetary to galactic scales. In the Earth–Moon system, effects caused by lunar tides were reported in the Earth’s crust, oceans, neutral gas-dominated atmosphere (including the ionosphere) and near-ground geomagnetic field. However, whether a lunar tide effect exists in the plasma-dominated regions has not been explored yet. Here we show evidence of a lunar tide-induced signal in the plasmasphere, the inner region of the magnetosphere, which is filled with cold plasma. We obtain these results by analysing variations in the plasmasphere’s boundary location over the past four decades from multisatellite observations. The signal possesses distinct diurnal (and monthly) periodicities, which are different from the semidiurnal (and semimonthly) variations dominant in the previously observed lunar tide effects in other regions. These results demonstrate the importance of lunar tidal effects in plasma-dominated regions, influencing understanding of the coupling between the Moon, atmosphere and magnetosphere system through gravity and electromagnetic forces. Furthermore, these findings may have implications for tidal interactions in other two-body celestial systems.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Quasiparticles, flat bands and the melting of hydrodynamic matter

Imran SaeedORCID; Hyuk Kyu PakORCID; Tsvi TlustyORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Realization of a multi-turn energy recovery accelerator

Felix SchliessmannORCID; Michaela ArnoldORCID; Lars JuergensenORCID; Norbert PietrallaORCID; Manuel DutineORCID; Marco FischerORCID; Ruben GreweORCID; Manuel SteinhorstORCID; Lennart StobbeORCID; Simon WeihORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

A route to greener Big Science

Peter WilliamsORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Ultrafast relaxation of lattice distortion in two-dimensional perovskites

Hao ZhangORCID; Wenbin Li; Joseph Essman; Claudio Quarti; Isaac Metcalf; Wei-Yi Chiang; Siraj Sidhik; Jin HouORCID; Austin Fehr; Andrew Attar; Ming-Fu LinORCID; Alexander Britz; Xiaozhe ShenORCID; Stephan Link; Xijie WangORCID; Uwe BergmannORCID; Mercouri G. KanatzidisORCID; Claudine KatanORCID; Jacky EvenORCID; Jean-Christophe BlanconORCID; Aditya D. MohiteORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Lunar modulations

Balázs HeiligORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Probing the onset of quantum avalanches in a many-body localized system

Julian Léonard; Sooshin KimORCID; Matthew Rispoli; Alexander Lukin; Robert Schittko; Joyce Kwan; Eugene Demler; Dries SelsORCID; Markus Greiner

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Coupling of terahertz light with nanometre-wavelength magnon modes via spin–orbit torque

Ruslan SalikhovORCID; Igor Ilyakov; Lukas KörberORCID; Attila KákayORCID; Rodolfo A. Gallardo; Alexey Ponomaryov; Jan-Christoph DeinertORCID; Thales V. A. G. de OliveiraORCID; Kilian LenzORCID; Jürgen FassbenderORCID; Stefano BonettiORCID; Olav HellwigORCID; Jürgen Lindner; Sergey KovalevORCID

<jats:title>Abstract</jats:title><jats:p>Spin-based technologies can operate at terahertz frequencies but require manipulation techniques that work at ultrafast timescales to become practical. For instance, devices based on spin waves, also known as magnons, require efficient generation of high-energy exchange spin waves at nanometre wavelengths. To achieve this, a substantial coupling is needed between the magnon modes and an electro-magnetic stimulus such as a coherent terahertz field pulse. However, it has been difficult to excite non-uniform spin waves efficiently using terahertz light because of the large momentum mismatch between the submillimetre-wave radiation and the nanometre-sized spin waves. Here we improve the light–matter interaction by engineering thin films to exploit relativistic spin–orbit torques that are confined to the interfaces of heavy metal/ferromagnet heterostructures. We are able to excite spin-wave modes with frequencies of up to 0.6 THz and wavelengths as short as 6 nm using broadband terahertz radiation. Numerical simulations demonstrate that the coupling of terahertz light to exchange-dominated magnons originates solely from interfacial spin–orbit torques. Our results are of general applicability to other magnetic multilayered structures, and offer the prospect of nanoscale control of high-frequency signals.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. No disponible