Catálogo de publicaciones - revistas

Compartir en
redes sociales


Nature Physics

Resumen/Descripción – provisto por la editorial en inglés
Nature Physics publishes papers of the highest quality and significance in all areas of physics, pure and applied. The journal content reflects core physics disciplines, but is also open to a broad range of topics whose central theme falls within the bounds of physics. Theoretical physics, particularly where it is pertinent to experiment, also features.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 2012 / hasta dic. 2023 Nature.com

Información

Tipo de recurso:

revistas

ISSN impreso

1745-2473

ISSN electrónico

1745-2481

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Cobertura temática

Tabla de contenidos

One spin at a time

Richard Brierley

Palabras clave: General Physics and Astronomy.

Pp. 1395-1395

Nematicity and nematic fluctuations in iron-based superconductors

Anna E. Böhmer; Jiun-Haw ChuORCID; Samuel Lederer; Ming YiORCID

Palabras clave: General Physics and Astronomy.

Pp. 1412-1419

The power of the watt

Héctor Laiz

Palabras clave: General Physics and Astronomy.

Pp. 1520-1520

Quantum coherence tomography of light-controlled superconductivity

L. Luo; M. Mootz; J. H. KangORCID; C. HuangORCID; K. EomORCID; J. W. Lee; C. Vaswani; Y. G. Collantes; E. E. Hellstrom; I. E. PerakisORCID; C. B. Eom; J. WangORCID

<jats:title>Abstract</jats:title><jats:p>The coupling between superconductors and oscillation cycles of light pulses, i.e., lightwave engineering, is an emerging control concept for superconducting quantum electronics. Although progress has been made towards terahertz-driven superconductivity and supercurrents, the interactions able to drive non-equilibrium pairing are still poorly understood, partially due to the lack of measurements of high-order correlation functions. In particular, the sensing of exotic collective modes that would uniquely characterize light-driven superconducting coherence, in a way analogous to the Meissner effect, is very challenging but much needed. Here we report the discovery of parametrically driven superconductivity by light-induced order-parameter collective oscillations in iron-based superconductors. The time-periodic relative phase dynamics between the coupled electron and hole bands drives the transition to a distinct parametric superconducting state out-of-equalibrium. This light-induced emergent coherence is characterized by a unique phase–amplitude collective mode with Floquet-like sidebands at twice the Higgs frequency. We measure non-perturbative, high-order correlations of this parametrically driven superconductivity by separating the terahertz-frequency multidimensional coherent spectra into pump–probe, Higgs mode and bi-Higgs frequency sideband peaks. We find that the higher-order bi-Higgs sidebands dominate above the critical field, which indicates the breakdown of susceptibility perturbative expansion in this parametric quantum matter.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Stiffness-dependent active wetting enables optimal collective cell durotaxis

Macià Esteve Pallarès; Irina Pi-JaumàORCID; Isabela Corina FortunatoORCID; Valeria GrazuORCID; Manuel Gómez-GonzálezORCID; Pere Roca-CusachsORCID; Jesus M. de la Fuente; Ricard AlertORCID; Raimon SunyerORCID; Jaume CasademuntORCID; Xavier TrepatORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

The study of the journey of cosmic antimatter

Aihong TangORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Measurement of anti-3He nuclei absorption in matter and impact on their propagation in the Galaxy

; S. Acharya; D. Adamová; A. Adler; J. Adolfsson; G. Aglieri Rinella; M. Agnello; N. Agrawal; Z. Ahammed; S. Ahmad; S. U. Ahn; I. Ahuja; Z. Akbar; A. Akindinov; M. Al-Turany; S. N. Alam; D. Aleksandrov; B. Alessandro; H. M. Alfanda; R. Alfaro Molina; B. Ali; Y. Ali; A. Alici; N. Alizadehvandchali; A. Alkin; J. Alme; G. Alocco; T. Alt; I. Altsybeev; M. N. Anaam; C. Andrei; D. Andreou; A. Andronic; V. Anguelov; F. Antinori; P. Antonioli; C. Anuj; N. Apadula; L. Aphecetche; H. Appelshäuser; S. Arcelli; R. Arnaldi; I. C. Arsene; M. Arslandok; A. Augustinus; R. Averbeck; S. Aziz; M. D. Azmi; A. Badalá; Y. W. Baek; X. Bai; R. Bailhache; Y. Bailung; R. Bala; A. Balbino; A. Baldisseri; B. Balis; D. Banerjee; Z. Banoo; R. Barbera; L. Barioglio; M. Barlou; G. G. Barnaföldi; L. S. Barnby; V. Barret; C. Bartels; K. Barth; E. Bartsch; F. Baruffaldi; N. Bastid; S. Basu; G. Batigne; D. Battistini; B. Batyunya; D. Bauri; J. L. Bazo Alba; I. G. Bearden; C. Beattie; P. Becht; I. Belikov; A. D. C. Bell Hechavarria; F. Bellini; R. Bellwied; S. Belokurova; V. Belyaev; G. Bencedi; S. Beole; A. Bercuci; Y. Berdnikov; A. Berdnikova; L. Bergmann; M. G. Besoiu; L. Betev; P. P. Bhaduri; A. Bhasin; I. R. Bhat; M. A. Bhat; B. Bhattacharjee; P. Bhattacharya; L. Bianchi; N. Bianchi; J. Bielčik; J. Bielčikova; J. Biernat; A. Bilandzic; G. Biro; S. Biswas; J. T. Blair; D. Blau; M. B. Blidaru; C. Blume; G. Boca; F. Bock; A. Bogdanov; S. Boi; J. Bok; L. Boldizsár; A. Bolozdynya; M. Bombara; P. M. Bond; G. Bonomi; H. Borel; A. Borissov; H. Bossi; E. Botta; L. Bratrud; P. Braun-Munzinger; M. Bregant; M. Broz; G. E. Bruno; M. D. Buckland; D. Budnikov; H. Buesching; S. Bufalino; O. Bugnon; P. Buhler; Z. Buthelezi; J. B. Butt; A. Bylinkin; S. A. Bysiak; M. Cai; H. Caines; A. Caliva; E. Calvo Villar; J.M.M. Camacho; R. S. Camacho; P. Camerini; F.D.M. Canedo; M. Carabas; F. Carnesecchi; R. Caron; J. Castillo Castellanos; E.A.R. Casula; F. Catalano; C. Ceballos Sanchez; I. Chakaberia; P. Chakraborty; S. Chandra; S. Chapeland; M. Chartier; S. Chattopadhyay; S. Chattopadhyay; T. G. Chavez; T. Cheng; C. Cheshkov; B. Cheynis; V. Chibante Barroso; D. D. Chinellato; S. Cho; P. Chochula; P. Christakoglou; C. H. Christensen; P. Christiansen; T. Chujo; C. Cicalo; L. Cifarelli; F. Cindolo; M. R. Ciupek; G. Clai; J. Cleymans; F. Colamaria; J. S. Colburn; D. Colella; A. Collu; M. Colocci; M. Concas; G. Conesa Balbastre; Z. Conesa del Valle; G. Contin; J. G. Contreras; M. L. Coquet; T. M. Cormier; P. Cortese; M. R. Cosentino; F. Costa; S. Costanza; P. Crochet; R. Cruz-Torres; E. Cuautle; P. Cui; L. Cunqueiro; A. Dainese; M. C. Danisch; A. Danu; P. Das; P. Das; S. Das; S. Dash; A. De Caro; G. de Cataldo; L. De Cilladi; J. de Cuveland; A. De Falco; D. De Gruttola; N. De Marco; C. De Martín; S. De Pasquale; S. Deb; H. F. Degenhardt; K. R. Deja; R. Del Grande; L. Dello Stritto; W. Deng; P. Dhankher; D. Di Bari; A. Di Mauro; R. A. Diaz; T. Dietel; Y. Ding; R. Diviá; D. U. Dixit; Ø. Djuvsland; U. Dmitrieva; J. Do; A. Dobrin; B. Dönigus; A. K. Dubey; A. Dubla; S. Dudi; P. Dupieux; M. Durkac; N. Dzalaiova; T. M. Eder; R. J. Ehlers; V. N. Eikeland; F. Eisenhut; D. Elia; B. Erazmus; F. Ercolessi; F. Erhardt; A. Erokhin; M. R. Ersdal; B. Espagnon; G. Eulisse; D. Evans; S. Evdokimov; L. Fabbietti; M. Faggin; J. Faivre; F. Fan; W. Fan; A. Fantoni; M. Fasel; P. Fecchio; A. Feliciello; G. Feofilov; A. Fernández Téllez; A. Ferrero; A. Ferretti; V.J.G. Feuillard; J. Figiel; V. Filova; D. Finogeev; F. M. Fionda; G. Fiorenza; F. Flor; A. N. Flores; S. Foertsch; S. Fokin; E. Fragiacomo; E. Frajna; A. Francisco; U. Fuchs; N. Funicello; C. Furget; A. Furs; J. J. Gaardhøje; M. Gagliardi; A. M. Gago; A. Gal; C. D. Galvan; P. Ganoti; C. Garabatos; J.R.A. Garcia; E. Garcia-Solis; K. Garg; C. Gargiulo; A. Garibli; K. Garner; P. Gasik; E. F. Gauger; A. Gautam; M. B. Gay Ducati; M. Germain; S. K. Ghosh; M. Giacalone; P. Gianotti; P. Giubellino; P. Giubilato; A.M.C. Glaenzer; P. Glässel; E. Glimos; D.J.Q. Goh; V. González; L. H. Gonzalez-Trueba; S. Gorbunov; M. Gorgon; L. Görlich; S. Gotovac; V. Grabski; L. K. Graczykowski; L. Greiner; A. Grelli; C. Grigoras; V. Grigoriev; S. Grigoryan; F. Grosa; J. F. Grosse-Oetringhaus; R. Grosso; D. Grund; G. G. Guardiano; R. Guernane; M. Guilbaud; K. Gulbrandsen; T. Gunji; W. Guo; A. Gupta; R. Gupta; S. P. Guzman; L. Gyulai; M. K. Habib; C. Hadjidakis; H. Hamagaki; M. Hamid; R. Hannigan; M. R. Haque; A. Harlenderova; J. W. Harris; A. Harton; J. A. Hasenbichler; H. Hassan; D. Hatzifotiadou; P. Hauer; L. B. Havener; S. T. Heckel; E. Hellbär; H. Helstrup; T. Herman; G. Herrera Corral; F. Herrmann; K. F. Hetland; H. Hillemanns; C. Hills; B. Hippolyte; B. Hofman; B. Hohlweger; J. Honermann; G. H. Hong; D. Horak; S. Hornung; A. Horzyk; R. Hosokawa; Y. Hou; P. Hristov; C. Hughes; P. Huhn; L. M. Huhta; C. V. Hulse; T. J. Humanic; H. Hushnud; L. A. Husova; A. Hutson; J. P. Iddon; R. Ilkaev; H. Ilyas; M. Inaba; G. M. Innocenti; M. Ippolitov; A. Isakov; T. Isidori; M. S. Islam; M. Ivanov; V. Ivanov; V. Izucheev; M. Jablonski; B. Jacak; N. Jacazio; P. M. Jacobs; S. Jadlovska; J. Jadlovsky; S. Jaelani; C. Jahnke; M. J. Jakubowska; A. Jalotra; M. A. Janik; T. Janson; M. Jercic; O. Jevons; A.A.P. Jimenez; F. Jonas; P. G. Jones; J. M. Jowett; J. Jung; M. Jung; A. Junique; A. Jusko; M. J. Kabus; J. Kaewjai; P. Kalinak; A. S. Kalteyer; A. Kalweit; V. Kaplin; A. Karasu Uysal; D. Karatovic; O. Karavichev; T. Karavicheva; P. Karczmarczyk; E. Karpechev; V. Kashyap; A. Kazantsev; U. Kebschull; R. Keidel; D.L.D. Keijdener; M. Keil; B. Ketzer; A. M. Khan; S. Khan; A. Khanzadeev; Y. Kharlov; A. Khatun; A. Khuntia; B. Kileng; B. Kim; C. Kim; D. J. Kim; E. J. Kim; J. Kim; J. S. Kim; J. Kim; J. Kim; M. Kim; S. Kim; T. Kim; S. Kirsch; I. Kisel; S. Kiselev; A. Kisiel; J. P. Kitowski; J. L. Klay; J. Klein; S. Klein; C. Klein-Bösing; M. Kleiner; T. Klemenz; A. Kluge; A. G. Knospe; C. Kobdaj; T. Kollegger; A. Kondratyev; N. Kondratyeva; E. Kondratyuk; J. Konig; S. A. Konigstorfer; P. J. Konopka; G. Kornakov; S. D. Koryciak; A. Kotliarov; O. Kovalenko; V. Kovalenko; M. Kowalski; I. Králik; A. Kravčaková; L. Kreis; M. Krivda; F. Krizek; K. Krizkova Gajdosova; M. Kroesen; M. Krüger; D. M. Krupova; E. Kryshen; M. Krzewicki; V. Kučera; C. Kuhn; P. G. Kuijer; T. Kumaoka; D. Kumar; L. Kumar; N. Kumar; S. Kundu; P. Kurashvili; A. Kurepin; A. B. Kurepin; A. Kuryakin; S. Kushpil; J. Kvapil; M. J. Kweon; J. Y. Kwon; Y. Kwon; S. L. La Pointe; P. La Rocca; Y. S. Lai; A. Lakrathok; M. Lamanna; R. Langoy; P. Larionov; E. Laudi; L. Lautner; R. Lavicka; T. Lazareva; R. Lea; J. Lehrbach; R. C. Lemmon; I. León Monzón; M. M. Lesch; E. D. Lesser; M. Lettrich; P. Lévai; X. Li; X. L. Li; J. Lien; R. Lietava; B. Lim; S. H. Lim; V. Lindenstruth; A. Lindner; C. Lippmann; A. Liu; D. H. Liu; J. Liu; I. M. Lofnes; V. Loginov; C. Loizides; P. Loncar; J. A. Lopez; X. Lopez; E. López Torres; J. R. Luhder; M. Lunardon; G. Luparello; Y. G. Ma; A. Maevskaya; M. Mager; T. Mahmoud; A. Maire; M. Malaev; N. M. Malik; Q. W. Malik; S. K. Malik; L. Malinina; D. Mal’Kevich; D. Mallick; N. Mallick; G. Mandaglio; V. Manko; F. Manso; V. Manzari; Y. Mao; G. V. Margagliotti; A. Margotti; A. Marín; C. Markert; M. Marquard; N. A. Martin; P. Martinengo; J. L. Martinez; M. I. Martinez; G. Martínez García; S. Masciocchi; M. Masera; A. Masoni; L. Massacrier; A. Mastroserio; A. M. Mathis; O. Matonoha; P.F.T. Matuoka; A. Matyja; C. Mayer; A. L. Mazuecos; F. Mazzaschi; M. Mazzilli; J. E. Mdhluli; A. F. Mechler; Y. Melikyan; A. Menchaca-Rocha; E. Meninno; A. S. Menon; M. Meres; S. Mhlanga; Y. Miake; L. Micheletti; L. C. Migliorin; D. L. Mihaylov; K. Mikhaylov; A. N. Mishra; D. Miśkowiec; A. Modak; A. P. Mohanty; B. Mohanty; M. Mohisin Khan; M. A. Molander; Z. Moravcova; C. Mordasini; D. A. Moreira De Godoy; I. Morozov; A. Morsch; T. Mrnjavac; V. Muccifora; E. Mudnic; D. Mühlheim; S. Muhuri; J. D. Mulligan; A. Mulliri; M. G. Munhoz; R. H. Munzer; H. Murakami; S. Murray; L. Musa; J. Musinsky; J. W. Myrcha; B. Naik; R. Nair; B. K. Nandi; R. Nania; E. Nappi; A. F. Nassirpour; A. Nath; C. Nattrass; A. Neagu; A. Negru; L. Nellen; S. V. Nesbo; G. Neskovic; D. Nesterov; B. S. Nielsen; E. G. Nielsen; S. Nikolaev; S. Nikulin; V. Nikulin; F. Noferini; S. Noh; P. Nomokonov; J. Norman; N. Novitzky; P. Nowakowski; A. Nyanin; J. Nystrand; M. Ogino; A. Ohlson; V. A. Okorokov; J. Oleniacz; A. C. Oliveira Da Silva; M. H. Oliver; A. Onnerstad; C. Oppedisano; A. Ortiz Velasquez; T. Osako; A. Oskarsson; J. Otwinowski; M. Oya; K. Oyama; Y. Pachmayer; S. Padhan; D. Pagano; G. Paić; A. Palasciano; S. Panebianco; J. Park; J. E. Parkkila; S. P. Pathak; R. N. Patra; B. Paul; H. Pei; T. Peitzmann; X. Peng; L. G. Pereira; H. Pereira Da Costa; D. Peresunko; G. M. Perez; S. Perrin; Y. Pestov; V. Petráček; M. Petrovici; R. P. Pezzi; S. Piano; M. Pikna; P. Pillot; O. Pinazza; L. Pinsky; C. Pinto; S. Pisano; M. Płoskoń; M. Planinic; F. Pliquett; M. G. Poghosyan; B. Polichtchouk; S. Politano; N. Poljak; A. Pop; S. Porteboeuf-Houssais; J. Porter; V. Pozdniakov; S. K. Prasad; R. Preghenella; F. Prino; C. A. Pruneau; I. Pshenichnov; M. Puccio; S. Qiu; L. Quaglia; R. E. Quishpe; S. Ragoni; A. Rakotozafindrabe; L. Ramello; F. Rami; S.A.R. Ramirez; T. A. Rancien; R. Raniwala; S. Raniwala; S. S. Räsänen; R. Rath; I. Ravasenga; K. F. Read; A. R. Redelbach; K. Redlich; A. Rehman; P. Reichelt; F. Reidt; H. A. Reme-ness; Z. Rescakova; K. Reygers; A. Riabov; V. Riabov; T. Richert; M. Richter; W. Riegler; F. Riggi; C. Ristea; M. Rodríguez Cahuantzi; K. Roed; R. Rogalev; E. Rogochaya; T. S. Rogoschinski; D. Røhr; D. Röhrich; P. F. Rojas; S. Rojas Torres; P. S. Rokita; F. Ronchetti; A. Rosano; E. D. Rosas; A. Rossi; A. Roy; P. Roy; S. Roy; N. Rubini; O. V. Rueda; D. Ruggiano; R. Rui; B. Rumyantsev; P. G. Russek; R. Russo; A. Rustamov; E. Ryabinkin; Y. Ryabov; A. Rybicki; H. Rytkonen; W. Rzesa; O.A.M. Saarimaki; R. Sadek; S. Sadovsky; J. Saetre; K. Šafařík; S. K. Saha; S. Saha; B. Sahoo; P. Sahoo; R. Sahoo; S. Sahoo; D. Sahu; P. K. Sahu; J. Saini; S. Sakai; M. P. Salvan; S. Sambyal; T. B. Saramela; D. Sarkar; N. Sarkar; P. Sarma; V. M. Sarti; M.H.P. Sas; J. Schambach; H. S. Scheid; C. Schiaua; R. Schicker; A. Schmah; C. Schmidt; H. R. Schmidt; M. O. Schmidt; M. Schmidt; N. V. Schmidt; A. R. Schmier; R. Schotter; J. Schukraft; K. Schwarz; K. Schweda; G. Scioli; E. Scomparin; J. E. Seger; Y. Sekiguchi; D. Sekihata; I. Selyuzhenkov; S. Senyukov; J. J. Seo; D. Serebryakov; L. Šerkšnytė; A. Sevcenco; T. J. Shaba; A. Shabanov; A. Shabetai; R. Shahoyan; W. Shaikh; A. Shangaraev; A. Sharma; H. Sharma; M. Sharma; N. Sharma; S. Sharma; U. Sharma; A. Shatat; O. Sheibani; K. Shigaki; M. Shimomura; S. Shirinkin; Q. Shou; Y. Sibiriak; S. Siddhanta; T. Siemiarczuk; T. F. Silva; D. Silvermyr; T. Simantathammakul; G. Simonetti; B. Singh; R. Singh; R. Singh; R. Singh; V. K. Singh; V. Singhal; T. Sinha; B. Sitar; M. Sitta; T. B. Skaali; G. Skorodumovs; M. Slupecki; N. Smirnov; R.J.M. Snellings; C. Soncco; J. Song; A. Songmoolnak; F. Soramel; S. Sorensen; I. Sputowska; J. Stachel; I. Stan; P. J. Steffanic; S. F. Stiefelmaier; D. Stocco; I. Storehaug; M. M. Storetvedt; P. Stratmann; S. Strazzi; C. P. Stylianidis; A.A.P. Suaide; C. Suire; M. Sukhanov; M. Suljic; R. Sultanov; V. Sumberia; S. Sumowidagdo; S. Swain; A. Szabo; I. Szarka; U. Tabassam; S. F. Taghavi; G. Taillepied; J. Takahashi; G. J. Tambave; S. Tang; Z. Tang; J. D. Tapia Takaki; N. Tapus; M. G. Tarzila; A. Tauro; G. Tejeda Muñoz; A. Telesca; L. Terlizzi; C. Terrevoli; G. Tersimonov; S. Thakur; D. Thomas; R. Tieulent; A. Tikhonov; A. R. Timmins; M. Tkacik; A. Toia; N. Topilskaya; M. Toppi; F. Torales-Acosta; T. Tork; A. G. Torres Ramos; A. Trifiró; A. S. Triolo; S. Tripathy; T. Tripathy; S. Trogolo; V. Trubnikov; W. H. Trzaska; T. P. Trzcinski; A. Tumkin; R. Turrisi; T. S. Tveter; K. Ullaland; A. Uras; M. Urioni; G. L. Usai; M. Vala; N. Valle; S. Vallero; L.V.R. van Doremalen; M. van Leeuwen; R.J.G. van Weelden; P. Vande Vyvre; D. Varga; Z. Varga; M. Varga-Kofarago; M. Vasileiou; A. Vasiliev; O. Vázquez Doce; V. Vechernin; A. Velure; E. Vercellin; S. Vergara Limón; L. Vermunt; R. Vértesi; M. Verweij; L. Vickovic; Z. Vilakazi; O. Villalobos Baillie; G. Vino; A. Vinogradov; T. Virgili; V. Vislavicius; A. Vodopyanov; B. Volkel; M. A. Völkl; K. Voloshin; S. A. Voloshin; G. Volpe; B. von Haller; I. Vorobyev; N. Vozniuk; J. Vrlákova; B. Wagner; C. Wang; D. Wang; M. Weber; A. Wegrzynek; S. C. Wenzel; J. P. Wessels; S. L. Weyhmiller; J. Wiechula; J. Wikne; G. Wilk; J. Wilkinson; G. A. Willems; B. Windelband; M. Winn; W. E. Witt; J. R. Wright; W. Wu; Y. Wu; R. Xu; A. K. Yadav; S. Yalcin; Y. Yamaguchi; K. Yamakawa; S. Yang; S. Yano; Z. Yin; I.-K. Yoo; J. H. Yoon; S. Yuan; A. Yuncu; V. Zaccolo; C. Zampolli; H.J.C. Zanoli; F. Zanone; N. Zardoshti; A. Zarochentsev; P. Závada; N. Zaviyalov; M. Zhalov; B. Zhang; S. Zhang; X. Zhang; Y. Zhang; V. Zherebchevskii; Y. Zhi; N. Zhigareva; D. Zhou; Y. Zhou; J. Zhu; Y. Zhu; G. Zinovjev; N. Zurlo

<jats:title>Abstract</jats:title><jats:p>In our Galaxy, light antinuclei composed of antiprotons and antineutrons can be produced through high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of dark-matter particles that have not yet been discovered. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators. Although the properties of elementary antiparticles have been studied in detail, the knowledge of the interaction of light antinuclei with matter is limited. We determine the disappearance probability of <jats:inline-formula><jats:alternatives><jats:tex-math>$${}^{3}\overline{{{{\rm{He}}}}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mover> <mml:mrow> <mml:mi>He</mml:mi> </mml:mrow> <mml:mo>¯</mml:mo> </mml:mover> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> when it encounters matter particles and annihilates or disintegrates within the ALICE detector at the Large Hadron Collider. We extract the inelastic interaction cross section, which is then used as an input to the calculations of the transparency of our Galaxy to the propagation of <jats:inline-formula><jats:alternatives><jats:tex-math>$${}^{3}\overline{{{{\rm{He}}}}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mover> <mml:mrow> <mml:mi>He</mml:mi> </mml:mrow> <mml:mo>¯</mml:mo> </mml:mover> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> stemming from dark-matter annihilation and cosmic-ray interactions within the interstellar medium. For a specific dark-matter profile, we estimate a transparency of about 50%, whereas it varies with increasing <jats:inline-formula><jats:alternatives><jats:tex-math>$${}^{3}\overline{{{{\rm{He}}}}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mover> <mml:mrow> <mml:mi>He</mml:mi> </mml:mrow> <mml:mo>¯</mml:mo> </mml:mover> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> momentum from 25% to 90% for cosmic-ray sources. The results indicate that <jats:inline-formula><jats:alternatives><jats:tex-math>$${}^{3}\overline{{{{\rm{He}}}}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mover> <mml:mrow> <mml:mi>He</mml:mi> </mml:mrow> <mml:mo>¯</mml:mo> </mml:mover> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> nuclei can travel long distances in the Galaxy, and can be used to study cosmic-ray interactions and dark-matter annihilation.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Travel through the shock

Hui ZhangORCID; Terry Z. Liu

Palabras clave: General Physics and Astronomy.

Pp. No disponible

How cells dig a hole for themselves

Tatiana MerleORCID; Magali Suzanne

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Transmission of foreshock waves through Earth’s bow shock

L. TurcORCID; O. W. Roberts; D. Verscharen; A. P. Dimmock; P. Kajdič; M. PalmrothORCID; Y. Pfau-KempfORCID; A. Johlander; M. Dubart; E. K. J. Kilpua; J. SoucekORCID; K. TakahashiORCID; N. Takahashi; M. BattarbeeORCID; U. GanseORCID

<jats:title>Abstract</jats:title><jats:p>The Earth’s magnetosphere and its bow shock, which is formed by the interaction of the supersonic solar wind with the terrestrial magnetic field, constitute a rich natural laboratory enabling in situ investigations of universal plasma processes. Under suitable interplanetary magnetic field conditions, a foreshock with intense wave activity forms upstream of the bow shock. So-called 30 s waves, named after their typical period at Earth, are the dominant wave mode in the foreshock and play an important role in modulating the shape of the shock front and affect particle reflection at the shock. These waves are also observed inside the magnetosphere and down to the Earth’s surface, but how they are transmitted through the bow shock remains unknown. By combining state-of-the-art global numerical simulations and spacecraft observations, we demonstrate that the interaction of foreshock waves with the shock generates earthward-propagating, fast-mode waves, which reach the magnetosphere. These findings give crucial insight into the interaction of waves with collisionless shocks in general and their impact on the downstream medium.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. No disponible