Catálogo de publicaciones - revistas
Nature Physics
Resumen/Descripción – provisto por la editorial en inglés
Nature Physics publishes papers of the highest quality and significance in all areas of physics, pure and applied. The journal content reflects core physics disciplines, but is also open to a broad range of topics whose central theme falls within the bounds of physics. Theoretical physics, particularly where it is pertinent to experiment, also features.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde jul. 2012 / hasta dic. 2023 | Nature.com |
Información
Tipo de recurso:
revistas
ISSN impreso
1745-2473
ISSN electrónico
1745-2481
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005-
Cobertura temática
Tabla de contenidos
One spin at a time
Richard Brierley
Palabras clave: General Physics and Astronomy.
Pp. 1395-1395
Nematicity and nematic fluctuations in iron-based superconductors
Anna E. Böhmer; Jiun-Haw Chu; Samuel Lederer; Ming Yi
Palabras clave: General Physics and Astronomy.
Pp. 1412-1419
The power of the watt
Héctor Laiz
Palabras clave: General Physics and Astronomy.
Pp. 1520-1520
Quantum coherence tomography of light-controlled superconductivity
L. Luo; M. Mootz; J. H. Kang; C. Huang; K. Eom; J. W. Lee; C. Vaswani; Y. G. Collantes; E. E. Hellstrom; I. E. Perakis; C. B. Eom; J. Wang
<jats:title>Abstract</jats:title><jats:p>The coupling between superconductors and oscillation cycles of light pulses, i.e., lightwave engineering, is an emerging control concept for superconducting quantum electronics. Although progress has been made towards terahertz-driven superconductivity and supercurrents, the interactions able to drive non-equilibrium pairing are still poorly understood, partially due to the lack of measurements of high-order correlation functions. In particular, the sensing of exotic collective modes that would uniquely characterize light-driven superconducting coherence, in a way analogous to the Meissner effect, is very challenging but much needed. Here we report the discovery of parametrically driven superconductivity by light-induced order-parameter collective oscillations in iron-based superconductors. The time-periodic relative phase dynamics between the coupled electron and hole bands drives the transition to a distinct parametric superconducting state out-of-equalibrium. This light-induced emergent coherence is characterized by a unique phase–amplitude collective mode with Floquet-like sidebands at twice the Higgs frequency. We measure non-perturbative, high-order correlations of this parametrically driven superconductivity by separating the terahertz-frequency multidimensional coherent spectra into pump–probe, Higgs mode and bi-Higgs frequency sideband peaks. We find that the higher-order bi-Higgs sidebands dominate above the critical field, which indicates the breakdown of susceptibility perturbative expansion in this parametric quantum matter.</jats:p>
Palabras clave: General Physics and Astronomy.
Pp. No disponible
Stiffness-dependent active wetting enables optimal collective cell durotaxis
Macià Esteve Pallarès; Irina Pi-Jaumà; Isabela Corina Fortunato; Valeria Grazu; Manuel Gómez-González; Pere Roca-Cusachs; Jesus M. de la Fuente; Ricard Alert; Raimon Sunyer; Jaume Casademunt; Xavier Trepat
Palabras clave: General Physics and Astronomy.
Pp. No disponible
The study of the journey of cosmic antimatter
Aihong Tang
Palabras clave: General Physics and Astronomy.
Pp. No disponible
Measurement of anti-3He nuclei absorption in matter and impact on their propagation in the Galaxy
; S. Acharya; D. Adamová; A. Adler; J. Adolfsson; G. Aglieri Rinella; M. Agnello; N. Agrawal; Z. Ahammed; S. Ahmad; S. U. Ahn; I. Ahuja; Z. Akbar; A. Akindinov; M. Al-Turany; S. N. Alam; D. Aleksandrov; B. Alessandro; H. M. Alfanda; R. Alfaro Molina; B. Ali; Y. Ali; A. Alici; N. Alizadehvandchali; A. Alkin; J. Alme; G. Alocco; T. Alt; I. Altsybeev; M. N. Anaam; C. Andrei; D. Andreou; A. Andronic; V. Anguelov; F. Antinori; P. Antonioli; C. Anuj; N. Apadula; L. Aphecetche; H. Appelshäuser; S. Arcelli; R. Arnaldi; I. C. Arsene; M. Arslandok; A. Augustinus; R. Averbeck; S. Aziz; M. D. Azmi; A. Badalá; Y. W. Baek; X. Bai; R. Bailhache; Y. Bailung; R. Bala; A. Balbino; A. Baldisseri; B. Balis; D. Banerjee; Z. Banoo; R. Barbera; L. Barioglio; M. Barlou; G. G. Barnaföldi; L. S. Barnby; V. Barret; C. Bartels; K. Barth; E. Bartsch; F. Baruffaldi; N. Bastid; S. Basu; G. Batigne; D. Battistini; B. Batyunya; D. Bauri; J. L. Bazo Alba; I. G. Bearden; C. Beattie; P. Becht; I. Belikov; A. D. C. Bell Hechavarria; F. Bellini; R. Bellwied; S. Belokurova; V. Belyaev; G. Bencedi; S. Beole; A. Bercuci; Y. Berdnikov; A. Berdnikova; L. Bergmann; M. G. Besoiu; L. Betev; P. P. Bhaduri; A. Bhasin; I. R. Bhat; M. A. Bhat; B. Bhattacharjee; P. Bhattacharya; L. Bianchi; N. Bianchi; J. Bielčik; J. Bielčikova; J. Biernat; A. Bilandzic; G. Biro; S. Biswas; J. T. Blair; D. Blau; M. B. Blidaru; C. Blume; G. Boca; F. Bock; A. Bogdanov; S. Boi; J. Bok; L. Boldizsár; A. Bolozdynya; M. Bombara; P. M. Bond; G. Bonomi; H. Borel; A. Borissov; H. Bossi; E. Botta; L. Bratrud; P. Braun-Munzinger; M. Bregant; M. Broz; G. E. Bruno; M. D. Buckland; D. Budnikov; H. Buesching; S. Bufalino; O. Bugnon; P. Buhler; Z. Buthelezi; J. B. Butt; A. Bylinkin; S. A. Bysiak; M. Cai; H. Caines; A. Caliva; E. Calvo Villar; J.M.M. Camacho; R. S. Camacho; P. Camerini; F.D.M. Canedo; M. Carabas; F. Carnesecchi; R. Caron; J. Castillo Castellanos; E.A.R. Casula; F. Catalano; C. Ceballos Sanchez; I. Chakaberia; P. Chakraborty; S. Chandra; S. Chapeland; M. Chartier; S. Chattopadhyay; S. Chattopadhyay; T. G. Chavez; T. Cheng; C. Cheshkov; B. Cheynis; V. Chibante Barroso; D. D. Chinellato; S. Cho; P. Chochula; P. Christakoglou; C. H. Christensen; P. Christiansen; T. Chujo; C. Cicalo; L. Cifarelli; F. Cindolo; M. R. Ciupek; G. Clai; J. Cleymans; F. Colamaria; J. S. Colburn; D. Colella; A. Collu; M. Colocci; M. Concas; G. Conesa Balbastre; Z. Conesa del Valle; G. Contin; J. G. Contreras; M. L. Coquet; T. M. Cormier; P. Cortese; M. R. Cosentino; F. Costa; S. Costanza; P. Crochet; R. Cruz-Torres; E. Cuautle; P. Cui; L. Cunqueiro; A. Dainese; M. C. Danisch; A. Danu; P. Das; P. Das; S. Das; S. Dash; A. De Caro; G. de Cataldo; L. De Cilladi; J. de Cuveland; A. De Falco; D. De Gruttola; N. De Marco; C. De Martín; S. De Pasquale; S. Deb; H. F. Degenhardt; K. R. Deja; R. Del Grande; L. Dello Stritto; W. Deng; P. Dhankher; D. Di Bari; A. Di Mauro; R. A. Diaz; T. Dietel; Y. Ding; R. Diviá; D. U. Dixit; Ø. Djuvsland; U. Dmitrieva; J. Do; A. Dobrin; B. Dönigus; A. K. Dubey; A. Dubla; S. Dudi; P. Dupieux; M. Durkac; N. Dzalaiova; T. M. Eder; R. J. Ehlers; V. N. Eikeland; F. Eisenhut; D. Elia; B. Erazmus; F. Ercolessi; F. Erhardt; A. Erokhin; M. R. Ersdal; B. Espagnon; G. Eulisse; D. Evans; S. Evdokimov; L. Fabbietti; M. Faggin; J. Faivre; F. Fan; W. Fan; A. Fantoni; M. Fasel; P. Fecchio; A. Feliciello; G. Feofilov; A. Fernández Téllez; A. Ferrero; A. Ferretti; V.J.G. Feuillard; J. Figiel; V. Filova; D. Finogeev; F. M. Fionda; G. Fiorenza; F. Flor; A. N. Flores; S. Foertsch; S. Fokin; E. Fragiacomo; E. Frajna; A. Francisco; U. Fuchs; N. Funicello; C. Furget; A. Furs; J. J. Gaardhøje; M. Gagliardi; A. M. Gago; A. Gal; C. D. Galvan; P. Ganoti; C. Garabatos; J.R.A. Garcia; E. Garcia-Solis; K. Garg; C. Gargiulo; A. Garibli; K. Garner; P. Gasik; E. F. Gauger; A. Gautam; M. B. Gay Ducati; M. Germain; S. K. Ghosh; M. Giacalone; P. Gianotti; P. Giubellino; P. Giubilato; A.M.C. Glaenzer; P. Glässel; E. Glimos; D.J.Q. Goh; V. González; L. H. Gonzalez-Trueba; S. Gorbunov; M. Gorgon; L. Görlich; S. Gotovac; V. Grabski; L. K. Graczykowski; L. Greiner; A. Grelli; C. Grigoras; V. Grigoriev; S. Grigoryan; F. Grosa; J. F. Grosse-Oetringhaus; R. Grosso; D. Grund; G. G. Guardiano; R. Guernane; M. Guilbaud; K. Gulbrandsen; T. Gunji; W. Guo; A. Gupta; R. Gupta; S. P. Guzman; L. Gyulai; M. K. Habib; C. Hadjidakis; H. Hamagaki; M. Hamid; R. Hannigan; M. R. Haque; A. Harlenderova; J. W. Harris; A. Harton; J. A. Hasenbichler; H. Hassan; D. Hatzifotiadou; P. Hauer; L. B. Havener; S. T. Heckel; E. Hellbär; H. Helstrup; T. Herman; G. Herrera Corral; F. Herrmann; K. F. Hetland; H. Hillemanns; C. Hills; B. Hippolyte; B. Hofman; B. Hohlweger; J. Honermann; G. H. Hong; D. Horak; S. Hornung; A. Horzyk; R. Hosokawa; Y. Hou; P. Hristov; C. Hughes; P. Huhn; L. M. Huhta; C. V. Hulse; T. J. Humanic; H. Hushnud; L. A. Husova; A. Hutson; J. P. Iddon; R. Ilkaev; H. Ilyas; M. Inaba; G. M. Innocenti; M. Ippolitov; A. Isakov; T. Isidori; M. S. Islam; M. Ivanov; V. Ivanov; V. Izucheev; M. Jablonski; B. Jacak; N. Jacazio; P. M. Jacobs; S. Jadlovska; J. Jadlovsky; S. Jaelani; C. Jahnke; M. J. Jakubowska; A. Jalotra; M. A. Janik; T. Janson; M. Jercic; O. Jevons; A.A.P. Jimenez; F. Jonas; P. G. Jones; J. M. Jowett; J. Jung; M. Jung; A. Junique; A. Jusko; M. J. Kabus; J. Kaewjai; P. Kalinak; A. S. Kalteyer; A. Kalweit; V. Kaplin; A. Karasu Uysal; D. Karatovic; O. Karavichev; T. Karavicheva; P. Karczmarczyk; E. Karpechev; V. Kashyap; A. Kazantsev; U. Kebschull; R. Keidel; D.L.D. Keijdener; M. Keil; B. Ketzer; A. M. Khan; S. Khan; A. Khanzadeev; Y. Kharlov; A. Khatun; A. Khuntia; B. Kileng; B. Kim; C. Kim; D. J. Kim; E. J. Kim; J. Kim; J. S. Kim; J. Kim; J. Kim; M. Kim; S. Kim; T. Kim; S. Kirsch; I. Kisel; S. Kiselev; A. Kisiel; J. P. Kitowski; J. L. Klay; J. Klein; S. Klein; C. Klein-Bösing; M. Kleiner; T. Klemenz; A. Kluge; A. G. Knospe; C. Kobdaj; T. Kollegger; A. Kondratyev; N. Kondratyeva; E. Kondratyuk; J. Konig; S. A. Konigstorfer; P. J. Konopka; G. Kornakov; S. D. Koryciak; A. Kotliarov; O. Kovalenko; V. Kovalenko; M. Kowalski; I. Králik; A. Kravčaková; L. Kreis; M. Krivda; F. Krizek; K. Krizkova Gajdosova; M. Kroesen; M. Krüger; D. M. Krupova; E. Kryshen; M. Krzewicki; V. Kučera; C. Kuhn; P. G. Kuijer; T. Kumaoka; D. Kumar; L. Kumar; N. Kumar; S. Kundu; P. Kurashvili; A. Kurepin; A. B. Kurepin; A. Kuryakin; S. Kushpil; J. Kvapil; M. J. Kweon; J. Y. Kwon; Y. Kwon; S. L. La Pointe; P. La Rocca; Y. S. Lai; A. Lakrathok; M. Lamanna; R. Langoy; P. Larionov; E. Laudi; L. Lautner; R. Lavicka; T. Lazareva; R. Lea; J. Lehrbach; R. C. Lemmon; I. León Monzón; M. M. Lesch; E. D. Lesser; M. Lettrich; P. Lévai; X. Li; X. L. Li; J. Lien; R. Lietava; B. Lim; S. H. Lim; V. Lindenstruth; A. Lindner; C. Lippmann; A. Liu; D. H. Liu; J. Liu; I. M. Lofnes; V. Loginov; C. Loizides; P. Loncar; J. A. Lopez; X. Lopez; E. López Torres; J. R. Luhder; M. Lunardon; G. Luparello; Y. G. Ma; A. Maevskaya; M. Mager; T. Mahmoud; A. Maire; M. Malaev; N. M. Malik; Q. W. Malik; S. K. Malik; L. Malinina; D. Mal’Kevich; D. Mallick; N. Mallick; G. Mandaglio; V. Manko; F. Manso; V. Manzari; Y. Mao; G. V. Margagliotti; A. Margotti; A. Marín; C. Markert; M. Marquard; N. A. Martin; P. Martinengo; J. L. Martinez; M. I. Martinez; G. Martínez García; S. Masciocchi; M. Masera; A. Masoni; L. Massacrier; A. Mastroserio; A. M. Mathis; O. Matonoha; P.F.T. Matuoka; A. Matyja; C. Mayer; A. L. Mazuecos; F. Mazzaschi; M. Mazzilli; J. E. Mdhluli; A. F. Mechler; Y. Melikyan; A. Menchaca-Rocha; E. Meninno; A. S. Menon; M. Meres; S. Mhlanga; Y. Miake; L. Micheletti; L. C. Migliorin; D. L. Mihaylov; K. Mikhaylov; A. N. Mishra; D. Miśkowiec; A. Modak; A. P. Mohanty; B. Mohanty; M. Mohisin Khan; M. A. Molander; Z. Moravcova; C. Mordasini; D. A. Moreira De Godoy; I. Morozov; A. Morsch; T. Mrnjavac; V. Muccifora; E. Mudnic; D. Mühlheim; S. Muhuri; J. D. Mulligan; A. Mulliri; M. G. Munhoz; R. H. Munzer; H. Murakami; S. Murray; L. Musa; J. Musinsky; J. W. Myrcha; B. Naik; R. Nair; B. K. Nandi; R. Nania; E. Nappi; A. F. Nassirpour; A. Nath; C. Nattrass; A. Neagu; A. Negru; L. Nellen; S. V. Nesbo; G. Neskovic; D. Nesterov; B. S. Nielsen; E. G. Nielsen; S. Nikolaev; S. Nikulin; V. Nikulin; F. Noferini; S. Noh; P. Nomokonov; J. Norman; N. Novitzky; P. Nowakowski; A. Nyanin; J. Nystrand; M. Ogino; A. Ohlson; V. A. Okorokov; J. Oleniacz; A. C. Oliveira Da Silva; M. H. Oliver; A. Onnerstad; C. Oppedisano; A. Ortiz Velasquez; T. Osako; A. Oskarsson; J. Otwinowski; M. Oya; K. Oyama; Y. Pachmayer; S. Padhan; D. Pagano; G. Paić; A. Palasciano; S. Panebianco; J. Park; J. E. Parkkila; S. P. Pathak; R. N. Patra; B. Paul; H. Pei; T. Peitzmann; X. Peng; L. G. Pereira; H. Pereira Da Costa; D. Peresunko; G. M. Perez; S. Perrin; Y. Pestov; V. Petráček; M. Petrovici; R. P. Pezzi; S. Piano; M. Pikna; P. Pillot; O. Pinazza; L. Pinsky; C. Pinto; S. Pisano; M. Płoskoń; M. Planinic; F. Pliquett; M. G. Poghosyan; B. Polichtchouk; S. Politano; N. Poljak; A. Pop; S. Porteboeuf-Houssais; J. Porter; V. Pozdniakov; S. K. Prasad; R. Preghenella; F. Prino; C. A. Pruneau; I. Pshenichnov; M. Puccio; S. Qiu; L. Quaglia; R. E. Quishpe; S. Ragoni; A. Rakotozafindrabe; L. Ramello; F. Rami; S.A.R. Ramirez; T. A. Rancien; R. Raniwala; S. Raniwala; S. S. Räsänen; R. Rath; I. Ravasenga; K. F. Read; A. R. Redelbach; K. Redlich; A. Rehman; P. Reichelt; F. Reidt; H. A. Reme-ness; Z. Rescakova; K. Reygers; A. Riabov; V. Riabov; T. Richert; M. Richter; W. Riegler; F. Riggi; C. Ristea; M. Rodríguez Cahuantzi; K. Roed; R. Rogalev; E. Rogochaya; T. S. Rogoschinski; D. Røhr; D. Röhrich; P. F. Rojas; S. Rojas Torres; P. S. Rokita; F. Ronchetti; A. Rosano; E. D. Rosas; A. Rossi; A. Roy; P. Roy; S. Roy; N. Rubini; O. V. Rueda; D. Ruggiano; R. Rui; B. Rumyantsev; P. G. Russek; R. Russo; A. Rustamov; E. Ryabinkin; Y. Ryabov; A. Rybicki; H. Rytkonen; W. Rzesa; O.A.M. Saarimaki; R. Sadek; S. Sadovsky; J. Saetre; K. Šafařík; S. K. Saha; S. Saha; B. Sahoo; P. Sahoo; R. Sahoo; S. Sahoo; D. Sahu; P. K. Sahu; J. Saini; S. Sakai; M. P. Salvan; S. Sambyal; T. B. Saramela; D. Sarkar; N. Sarkar; P. Sarma; V. M. Sarti; M.H.P. Sas; J. Schambach; H. S. Scheid; C. Schiaua; R. Schicker; A. Schmah; C. Schmidt; H. R. Schmidt; M. O. Schmidt; M. Schmidt; N. V. Schmidt; A. R. Schmier; R. Schotter; J. Schukraft; K. Schwarz; K. Schweda; G. Scioli; E. Scomparin; J. E. Seger; Y. Sekiguchi; D. Sekihata; I. Selyuzhenkov; S. Senyukov; J. J. Seo; D. Serebryakov; L. Šerkšnytė; A. Sevcenco; T. J. Shaba; A. Shabanov; A. Shabetai; R. Shahoyan; W. Shaikh; A. Shangaraev; A. Sharma; H. Sharma; M. Sharma; N. Sharma; S. Sharma; U. Sharma; A. Shatat; O. Sheibani; K. Shigaki; M. Shimomura; S. Shirinkin; Q. Shou; Y. Sibiriak; S. Siddhanta; T. Siemiarczuk; T. F. Silva; D. Silvermyr; T. Simantathammakul; G. Simonetti; B. Singh; R. Singh; R. Singh; R. Singh; V. K. Singh; V. Singhal; T. Sinha; B. Sitar; M. Sitta; T. B. Skaali; G. Skorodumovs; M. Slupecki; N. Smirnov; R.J.M. Snellings; C. Soncco; J. Song; A. Songmoolnak; F. Soramel; S. Sorensen; I. Sputowska; J. Stachel; I. Stan; P. J. Steffanic; S. F. Stiefelmaier; D. Stocco; I. Storehaug; M. M. Storetvedt; P. Stratmann; S. Strazzi; C. P. Stylianidis; A.A.P. Suaide; C. Suire; M. Sukhanov; M. Suljic; R. Sultanov; V. Sumberia; S. Sumowidagdo; S. Swain; A. Szabo; I. Szarka; U. Tabassam; S. F. Taghavi; G. Taillepied; J. Takahashi; G. J. Tambave; S. Tang; Z. Tang; J. D. Tapia Takaki; N. Tapus; M. G. Tarzila; A. Tauro; G. Tejeda Muñoz; A. Telesca; L. Terlizzi; C. Terrevoli; G. Tersimonov; S. Thakur; D. Thomas; R. Tieulent; A. Tikhonov; A. R. Timmins; M. Tkacik; A. Toia; N. Topilskaya; M. Toppi; F. Torales-Acosta; T. Tork; A. G. Torres Ramos; A. Trifiró; A. S. Triolo; S. Tripathy; T. Tripathy; S. Trogolo; V. Trubnikov; W. H. Trzaska; T. P. Trzcinski; A. Tumkin; R. Turrisi; T. S. Tveter; K. Ullaland; A. Uras; M. Urioni; G. L. Usai; M. Vala; N. Valle; S. Vallero; L.V.R. van Doremalen; M. van Leeuwen; R.J.G. van Weelden; P. Vande Vyvre; D. Varga; Z. Varga; M. Varga-Kofarago; M. Vasileiou; A. Vasiliev; O. Vázquez Doce; V. Vechernin; A. Velure; E. Vercellin; S. Vergara Limón; L. Vermunt; R. Vértesi; M. Verweij; L. Vickovic; Z. Vilakazi; O. Villalobos Baillie; G. Vino; A. Vinogradov; T. Virgili; V. Vislavicius; A. Vodopyanov; B. Volkel; M. A. Völkl; K. Voloshin; S. A. Voloshin; G. Volpe; B. von Haller; I. Vorobyev; N. Vozniuk; J. Vrlákova; B. Wagner; C. Wang; D. Wang; M. Weber; A. Wegrzynek; S. C. Wenzel; J. P. Wessels; S. L. Weyhmiller; J. Wiechula; J. Wikne; G. Wilk; J. Wilkinson; G. A. Willems; B. Windelband; M. Winn; W. E. Witt; J. R. Wright; W. Wu; Y. Wu; R. Xu; A. K. Yadav; S. Yalcin; Y. Yamaguchi; K. Yamakawa; S. Yang; S. Yano; Z. Yin; I.-K. Yoo; J. H. Yoon; S. Yuan; A. Yuncu; V. Zaccolo; C. Zampolli; H.J.C. Zanoli; F. Zanone; N. Zardoshti; A. Zarochentsev; P. Závada; N. Zaviyalov; M. Zhalov; B. Zhang; S. Zhang; X. Zhang; Y. Zhang; V. Zherebchevskii; Y. Zhi; N. Zhigareva; D. Zhou; Y. Zhou; J. Zhu; Y. Zhu; G. Zinovjev; N. Zurlo
<jats:title>Abstract</jats:title><jats:p>In our Galaxy, light antinuclei composed of antiprotons and antineutrons can be produced through high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of dark-matter particles that have not yet been discovered. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators. Although the properties of elementary antiparticles have been studied in detail, the knowledge of the interaction of light antinuclei with matter is limited. We determine the disappearance probability of <jats:inline-formula><jats:alternatives><jats:tex-math>$${}^{3}\overline{{{{\rm{He}}}}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mover> <mml:mrow> <mml:mi>He</mml:mi> </mml:mrow> <mml:mo>¯</mml:mo> </mml:mover> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> when it encounters matter particles and annihilates or disintegrates within the ALICE detector at the Large Hadron Collider. We extract the inelastic interaction cross section, which is then used as an input to the calculations of the transparency of our Galaxy to the propagation of <jats:inline-formula><jats:alternatives><jats:tex-math>$${}^{3}\overline{{{{\rm{He}}}}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mover> <mml:mrow> <mml:mi>He</mml:mi> </mml:mrow> <mml:mo>¯</mml:mo> </mml:mover> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> stemming from dark-matter annihilation and cosmic-ray interactions within the interstellar medium. For a specific dark-matter profile, we estimate a transparency of about 50%, whereas it varies with increasing <jats:inline-formula><jats:alternatives><jats:tex-math>$${}^{3}\overline{{{{\rm{He}}}}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mover> <mml:mrow> <mml:mi>He</mml:mi> </mml:mrow> <mml:mo>¯</mml:mo> </mml:mover> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> momentum from 25% to 90% for cosmic-ray sources. The results indicate that <jats:inline-formula><jats:alternatives><jats:tex-math>$${}^{3}\overline{{{{\rm{He}}}}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mover> <mml:mrow> <mml:mi>He</mml:mi> </mml:mrow> <mml:mo>¯</mml:mo> </mml:mover> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> nuclei can travel long distances in the Galaxy, and can be used to study cosmic-ray interactions and dark-matter annihilation.</jats:p>
Palabras clave: General Physics and Astronomy.
Pp. No disponible
Travel through the shock
Hui Zhang; Terry Z. Liu
Palabras clave: General Physics and Astronomy.
Pp. No disponible
How cells dig a hole for themselves
Tatiana Merle; Magali Suzanne
Palabras clave: General Physics and Astronomy.
Pp. No disponible
Transmission of foreshock waves through Earth’s bow shock
L. Turc; O. W. Roberts; D. Verscharen; A. P. Dimmock; P. Kajdič; M. Palmroth; Y. Pfau-Kempf; A. Johlander; M. Dubart; E. K. J. Kilpua; J. Soucek; K. Takahashi; N. Takahashi; M. Battarbee; U. Ganse
<jats:title>Abstract</jats:title><jats:p>The Earth’s magnetosphere and its bow shock, which is formed by the interaction of the supersonic solar wind with the terrestrial magnetic field, constitute a rich natural laboratory enabling in situ investigations of universal plasma processes. Under suitable interplanetary magnetic field conditions, a foreshock with intense wave activity forms upstream of the bow shock. So-called 30 s waves, named after their typical period at Earth, are the dominant wave mode in the foreshock and play an important role in modulating the shape of the shock front and affect particle reflection at the shock. These waves are also observed inside the magnetosphere and down to the Earth’s surface, but how they are transmitted through the bow shock remains unknown. By combining state-of-the-art global numerical simulations and spacecraft observations, we demonstrate that the interaction of foreshock waves with the shock generates earthward-propagating, fast-mode waves, which reach the magnetosphere. These findings give crucial insight into the interaction of waves with collisionless shocks in general and their impact on the downstream medium.</jats:p>
Palabras clave: General Physics and Astronomy.
Pp. No disponible