Catálogo de publicaciones - revistas

Compartir en
redes sociales


Science

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde mar. 1997 / hasta dic. 2023 Science Journals

Información

Tipo de recurso:

revistas

ISSN impreso

0036-8075

ISSN electrónico

1095-9203

Editor responsable

American Association for the Advancement of Science (AAAS)

País de edición

Estados Unidos

Fecha de publicación

Cobertura temática

Tabla de contenidos

HIV cure: The daunting scale of the problem

Janet D. Siliciano; Robert F. Siliciano

<jats:p>Cure strategies are confounded by basic reservoir biology</jats:p>

Palabras clave: Multidisciplinary.

Pp. 703-705

Decoding the autoantibody reactome

Jillian R. Jaycox; Yile Dai; Aaron M. Ring

<jats:p>Autoantibodies influence a wide range of conditions beyond autoimmune diseases</jats:p>

Palabras clave: Multidisciplinary.

Pp. 705-707

Mixed-organism enzyme in plant defense

Elisha Thynne; Bostjan Kobe

<jats:p>Plants commandeer a pathogen’s virulence factor to bolster immunity</jats:p>

Palabras clave: Multidisciplinary.

Pp. 707-708

Managing expectations Fluke: Chance, Chaos, and Why Everything We Do Matters Brian Klaas Scribner, 2024. 336 pp.

Michael Travisano

<jats:p>A political scientist urges readers to embrace the chaos and complexity of life</jats:p>

Palabras clave: Multidisciplinary.

Pp. 710-710

Florida law undercuts US leadership in science

Thomas P. Kimbis

Palabras clave: Multidisciplinary.

Pp. 711-712

Who goes there?

Carla Nowosad

<jats:p>How B cells assess risk in the intestine</jats:p>

Palabras clave: Multidisciplinary.

Pp. 714-714

Stem cells in disguise

Gabriele Casirati

<jats:p>Epitope editing can empower targeted cancer immunotherapies</jats:p>

Palabras clave: Multidisciplinary.

Pp. 714-714

An antibiotic preorganized for ribosomal binding overcomes antimicrobial resistance

Kelvin J. Y. WuORCID; Ben I. C. Tresco; Antonio Ramkissoon; Elena V. AleksandrovaORCID; Egor A. SyroeginORCID; Dominic N. Y. SeeORCID; Priscilla Liow; Georgia A. DittemoreORCID; Meiyi Yu; Giambattista TestolinORCID; Matthew J. MitcheltreeORCID; Richard Y. LiuORCID; Maxim S. SvetlovORCID; Yury S. PolikanovORCID; Andrew G. MyersORCID

<jats:p> We report the design conception, chemical synthesis, and microbiological evaluation of the bridged macrobicyclic antibiotic cresomycin (CRM), which overcomes evolutionarily diverse forms of antimicrobial resistance that render modern antibiotics ineffective. CRM exhibits in vitro and in vivo efficacy against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains of <jats:italic>Staphylococcus aureus</jats:italic> , <jats:italic>Escherichia coli</jats:italic> , and <jats:italic>Pseudomonas aeruginosa</jats:italic> . We show that CRM is highly preorganized for ribosomal binding by determining its density functional theory–calculated, solution-state, solid-state, and (wild-type) ribosome-bound structures, which all align identically within the macrobicyclic subunits. Lastly, we report two additional x-ray crystal structures of CRM in complex with bacterial ribosomes separately modified by the ribosomal RNA methylases, chloramphenicol-florfenicol resistance (Cfr) and erythromycin-resistance ribosomal RNA methylase (Erm), revealing concessive adjustments by the target and antibiotic that permit CRM to maintain binding where other antibiotics fail. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 721-726

Oxygen rise in the tropical upper ocean during the Paleocene-Eocene Thermal Maximum

Simone MorettiORCID; Alexandra AudersetORCID; Curtis DeutschORCID; Ronja Schmitz; Lukas GerberORCID; Ellen ThomasORCID; Valeria LucianiORCID; Maria Rose PetrizzoORCID; Ralf Schiebel; Aradhna TripatiORCID; Philip SextonORCID; Richard NorrisORCID; Roberta D’OnofrioORCID; James ZachosORCID; Daniel M. SigmanORCID; Gerald H. HaugORCID; Alfredo Martínez-GarcíaORCID

<jats:p>The global ocean’s oxygen inventory is declining in response to global warming, but the future of the low-oxygen tropics is uncertain. We report new evidence for tropical oxygenation during the Paleocene-Eocene Thermal Maximum (PETM), a warming event that serves as a geologic analog to anthropogenic warming. Foraminifera-bound nitrogen isotopes indicate that the tropical North Pacific oxygen-deficient zone contracted during the PETM. A concomitant increase in foraminifera size implies that oxygen availability rose in the shallow subsurface throughout the tropical North Pacific. These changes are consistent with ocean model simulations of warming, in which a decline in biological productivity allows tropical subsurface oxygen to rise even as global ocean oxygen declines. The tropical oxygen increase may have helped avoid a mass extinction during the PETM.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 727-731

A plant mechanism of hijacking pathogen virulence factors to trigger innate immunity

Yu XiaoORCID; Guangzheng SunORCID; Qiangsheng YuORCID; Teng GaoORCID; Qinsheng ZhuORCID; Rui WangORCID; Shijia Huang; Zhifu Han; Felice CervoneORCID; Heng YinORCID; Tiancong QiORCID; Yuanchao WangORCID; Jijie ChaiORCID

<jats:p> Polygalacturonase-inhibiting proteins (PGIPs) interact with pathogen-derived polygalacturonases to inhibit their virulence-associated plant cell wall–degrading activity but stimulate immunity-inducing oligogalacturonide production. Here we show that interaction between <jats:italic>Phaseolus vulgaris</jats:italic> PGIP2 (PvPGIP2) and <jats:italic>Fusarium phyllophilum</jats:italic> polygalacturonase (FpPG) enhances substrate binding, resulting in inhibition of the enzyme activity of FpPG. This interaction promotes FpPG-catalyzed production of long-chain immunoactive oligogalacturonides, while diminishing immunosuppressive short oligogalacturonides. PvPGIP2 binding creates a substrate binding site on PvPGIP2-FpPG, forming a new polygalacturonase with boosted substrate binding activity and altered substrate preference. Structure-based engineering converts a putative PGIP that initially lacks FpPG-binding activity into an effective FpPG-interacting protein. These findings unveil a mechanism for plants to transform pathogen virulence activity into a defense trigger and provide proof of principle for engineering PGIPs with broader specificity. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 732-739