Catálogo de publicaciones - revistas
Science
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde mar. 1997 / hasta dic. 2023 | Science Journals |
Información
Tipo de recurso:
revistas
ISSN impreso
0036-8075
ISSN electrónico
1095-9203
Editor responsable
American Association for the Advancement of Science (AAAS)
País de edición
Estados Unidos
Fecha de publicación
1880-
Cobertura temática
Tabla de contenidos
Polymeric fire-extinguishing coatings
Caroline Ash; Jesse Smith (eds.)
Palabras clave: Multidisciplinary.
Pp. 406.4-407
Research experiences and social justice
Caroline Ash; Jesse Smith (eds.)
Palabras clave: Multidisciplinary.
Pp. 406.5-407
Coat, dope, peel
Caroline Ash; Jesse Smith (eds.)
Palabras clave: Multidisciplinary.
Pp. 406.6-407
Albumin's many talents
Caroline Ash; Jesse Smith (eds.)
Palabras clave: Multidisciplinary.
Pp. 406.7-407
Structure of an AMPK complex in an inactive, ATP-bound state
Yan Yan; Somnath Mukherjee; Kaleeckal G. Harikumar; Timothy S. Strutzenberg; X. Edward Zhou; Kelly Suino-Powell; Ting-Hai Xu; Ryan D. Sheldon; Jared Lamp; Joseph S. Brunzelle; Katarzyna Radziwon; Abigail Ellis; Scott J. Novick; Irving E. Vega; Russell G. Jones; Laurence J. Miller; H. Eric Xu; Patrick R. Griffin; Anthony A. Kossiakoff; Karsten Melcher
<jats:title>How to catch a dynamic state</jats:title> <jats:p> AMP-activated protein kinase (AMPK) is a key sensor of energy status in eukaryotes. Its dynamic structure is regulated by allosteric factors including phosphorylation and binding of nucleotides and metabolites. Yan <jats:italic>et al.</jats:italic> developed conformation-specific antibodies that trap AMPK in a fully inactive state that has experienced a large, domain-level rotation. Biophysical experiments in cells and in vitro are consistent with the structural work and support a model in which the activation loop is fully exposed in the completely inactive, dephosphorylated state. These structures inform our understanding of the complex allosteric behavior in this crucial metabolic regulator. </jats:p> <jats:p> <jats:italic>Science</jats:italic> , abe7565, this issue p. <jats:related-article issue="6553" page="413" related-article-type="in-this-issue" vol="373">413</jats:related-article> </jats:p>
Palabras clave: Multidisciplinary.
Pp. 413-419
Plant “helper” immune receptors are Ca 2+ -permeable nonselective cation channels
Pierre Jacob; Nak Hyun Kim; Feihua Wu; Farid El-Kasmi; Yuan Chi; William G. Walton; Oliver J. Furzer; Adam D. Lietzan; Sruthi Sunil; Korina Kempthorn; Matthew R. Redinbo; Zhen-Ming Pei; Li Wan; Jeffery L. Dangl
<jats:title>Calcium signaling for host cell death</jats:title> <jats:p> In response to microbial pathogens, some plants kill off their own cells to limit further spread of infection. The Toll/Interleukin-1 receptor/Resistance class of nucleotide-binding leucine-rich repeat receptors (known as TNLs) function in plants as immune receptors. These TNLs work together with a dedicated set of helper proteins. Jacob <jats:italic>et al.</jats:italic> reveal the structure of one of these helpers known as NRG1 (N REQUIREMENT GENE 1). The structure resembles a known animal cation channel. The authors demonstrate that helper NLRs directly control calcium ion influx to initiate host cell death, providing a mechanism for TNL outputs. </jats:p> <jats:p> <jats:italic>Science</jats:italic> , abg7917, this issue p. <jats:related-article issue="6553" page="420" related-article-type="in-this-issue" vol="373">420</jats:related-article> </jats:p>
Palabras clave: Multidisciplinary.
Pp. 420-425
Peta–electron volt gamma-ray emission from the Crab Nebula
; Zhen Cao; F. Aharonian; Q. An; Axikegu; L. X. Bai; Y. X. Bai; Y. W. Bao; D. Bastieri; X. J. Bi; Y. J. Bi; H. Cai; J. T. Cai; Zhe Cao; J. Chang; J. F. Chang; B. M. Chen; E. S. Chen; J. Chen; Liang Chen; Liang Chen; Long Chen; M. J. Chen; M. L. Chen; Q. H. Chen; S. H. Chen; S. Z. Chen; T. L. Chen; X. L. Chen; Y. Chen; N. Cheng; Y. D. Cheng; S. W. Cui; X. H. Cui; Y. D. Cui; B. D’Ettorre Piazzoli; B. Z. Dai; H. L. Dai; Z. G. Dai; Danzengluobu; D. della Volpe; X. J. Dong; K. K. Duan; J. H. Fan; Y. Z. Fan; Z. X. Fan; J. Fang; K. Fang; C. F. Feng; L. Feng; S. H. Feng; Y. L. Feng; B. Gao; C. D. Gao; L. Q. Gao; Q. Gao; W. Gao; M. M. Ge; L. S. Geng; G. H. Gong; Q. B. Gou; M. H. Gu; F. L. Guo; J. G. Guo; X. L. Guo; Y. Q. Guo; Y. Y. Guo; Y. A. Han; H. H. He; H. N. He; J. C. He; S. L. He; X. B. He; Y. He; M. Heller; Y. K. Hor; C. Hou; X. Hou; H. B. Hu; S. Hu; S. C. Hu; X. J. Hu; D. H. Huang; Q. L. Huang; W. H. Huang; X. T. Huang; X. Y. Huang; Z. C. Huang; F. Ji; X. L. Ji; H. Y. Jia; K. Jiang; Z. J. Jiang; C. Jin; T. Ke; D. Kuleshov; K. Levochkin; B. B. Li; Cheng Li; Cong Li; F. Li; H. B. Li; H. C. Li; H. Y. Li; Jian Li; Jie Li; K. Li; W. L. Li; X. R. Li; Xin Li; Xin Li; Y. Li; Y. Z. Li; Zhe Li; Zhuo Li; E. W. Liang; Y. F. Liang; S. J. Lin; B. Liu; C. Liu; D. Liu; H. Liu; H. D. Liu; J. Liu; J. L. Liu; J. S. Liu; J. Y. Liu; M. Y. Liu; R. Y. Liu; S. M. Liu; W. Liu; Y. Liu; Y. N. Liu; Z. X. Liu; W. J. Long; R. Lu; H. K. Lv; B. Q. Ma; L. L. Ma; X. H. Ma; J. R. Mao; A. Masood; Z. Min; W. Mitthumsiri; T. Montaruli; Y. C. Nan; B. Y. Pang; P. Pattarakijwanich; Z. Y. Pei; M. Y. Qi; Y. Q. Qi; B. Q. Qiao; J. J. Qin; D. Ruffolo; V. Rulev; A. Saiz; L. Shao; O. Shchegolev; X. D. Sheng; J. Y. Shi; H. C. Song; Yu. V. Stenkin; V. Stepanov; Y. Su; Q. N. Sun; X. N. Sun; Z. B. Sun; P. H. T. Tam; Z. B. Tang; W. W. Tian; B. D. Wang; C. Wang; H. Wang; H. G. Wang; J. C. Wang; J. S. Wang; L. P. Wang; L. Y. Wang; R. N. Wang; Wei Wang; Wei Wang; X. G. Wang; X. J. Wang; X. Y. Wang; Y. Wang; Y. D. Wang; Y. J. Wang; Y. P. Wang; Z. H. Wang; Z. X. Wang; Zhen Wang; Zheng Wang; D. M. Wei; J. J. Wei; Y. J. Wei; T. Wen; C. Y. Wu; H. R. Wu; S. Wu; W. X. Wu; X. F. Wu; S. Q. Xi; J. Xia; J. J. Xia; G. M. Xiang; D. X. Xiao; G. Xiao; H. B. Xiao; G. G. Xin; Y. L. Xin; Y. Xing; D. L. Xu; R. X. Xu; L. Xue; D. H. Yan; J. Z. Yan; C. W. Yang; F. F. Yang; J. Y. Yang; L. L. Yang; M. J. Yang; R. Z. Yang; S. B. Yang; Y. H. Yao; Z. G. Yao; Y. M. Ye; L. Q. Yin; N. Yin; X. H. You; Z. Y. You; Y. H. Yu; Q. Yuan; H. D. Zeng; T. X. Zeng; W. Zeng; Z. K. Zeng; M. Zha; X. X. Zhai; B. B. Zhang; H. M. Zhang; H. Y. Zhang; J. L. Zhang; J. W. Zhang; L. X. Zhang; Li Zhang; Lu Zhang; P. F. Zhang; P. P. Zhang; R. Zhang; S. R. Zhang; S. S. Zhang; X. Zhang; X. P. Zhang; Y. F. Zhang; Y. L. Zhang; Yi Zhang; Yong Zhang; B. Zhao; J. Zhao; L. Zhao; L. Z. Zhao; S. P. Zhao; F. Zheng; Y. Zheng; B. Zhou; H. Zhou; J. N. Zhou; P. Zhou; R. Zhou; X. X. Zhou; C. G. Zhu; F. R. Zhu; H. Zhu; K. J. Zhu; X. Zuo
<jats:title>High-energy photons from the Crab Nebula</jats:title> <jats:p>The Crab Nebula contains a pulsar that excites the surrounding gas to emit high-energy radiation. The combination of the pulsar's youth and nearby location makes the nebula the brightest gamma-ray source in the sky. The LHAASO Collaboration report observations of this source at energies of tera– to peta–electron volts, extending the spectrum of this prototypical object. They combine these data with observations at lower energies to model the physics of the emission process. The multiwave-length data can be explained by a combination of synchrotron radiation and inverse Compton scattering.</jats:p> <jats:p> <jats:italic>Science</jats:italic> , abg5137, this issue p. <jats:related-article issue="6553" page="425" related-article-type="in-this-issue" vol="373">425</jats:related-article> </jats:p>
Palabras clave: Multidisciplinary.
Pp. 425-430
Coherent manipulation of an Andreev spin qubit
M. Hays; V. Fatemi; D. Bouman; J. Cerrillo; S. Diamond; K. Serniak; T. Connolly; P. Krogstrup; J. Nygård; A. Levy Yeyati; A. Geresdi; M. H. Devoret
<jats:title>Superconducting spin qubit</jats:title> <jats:p> To date, the most promising solid-state approaches for developing quantum information-processing systems have been based on the circulating supercurrents of superconducting circuits and manipulating the spin properties of electrons in semiconductor quantum dots. Hays <jats:italic>et al.</jats:italic> combined the desirable aspects of both approaches, the scalability of the superconducting circuits and the compact footprint of the quantum dots, to design and fabricate a superconducting spin qubit (see the Perspective by Wendin and Shumeiko). This so-called Andreev spin qubit provides the opportunity to develop a new quantum information processing platform. </jats:p> <jats:p> <jats:italic>Science</jats:italic> , abf0345, this issue p. <jats:related-article issue="6553" page="430" related-article-type="in-this-issue" vol="373">430</jats:related-article> ; see also abk0929, p. <jats:related-article issue="6553" page="390" related-article-type="in-this-issue" vol="373">390</jats:related-article> </jats:p>
Palabras clave: Multidisciplinary.
Pp. 430-433
Upper mantle structure of Mars from InSight seismic data
Amir Khan; Savas Ceylan; Martin van Driel; Domenico Giardini; Philippe Lognonné; Henri Samuel; Nicholas C. Schmerr; Simon C. Stähler; Andrea C. Duran; Quancheng Huang; Doyeon Kim; Adrien Broquet; Constantinos Charalambous; John F. Clinton; Paul M. Davis; Mélanie Drilleau; Foivos Karakostas; Vedran Lekic; Scott M. McLennan; Ross R. Maguire; Chloé Michaut; Mark P. Panning; William T. Pike; Baptiste Pinot; Matthieu Plasman; John-Robert Scholz; Rudolf Widmer-Schnidrig; Tilman Spohn; Suzanne E. Smrekar; William B. Banerdt
<jats:title>Single seismometer structure</jats:title> <jats:p> Because of the lack of direct seismic observations, the interior structure of Mars has been a mystery. Khan <jats:italic>et al.</jats:italic> , Knapmeyer-Endrun <jats:italic>et al.</jats:italic> , and Stähler <jats:italic>et al.</jats:italic> used recently detected marsquakes from the seismometer deployed during the InSight mission to map the interior of Mars (see the Perspective by Cottaar and Koelemeijer). Mars likely has a 24- to 72-kilometer-thick crust with a very deep lithosphere close to 500 kilometers. Similar to the Earth, a low-velocity layer probably exists beneath the lithosphere. The crust of Mars is likely highly enriched in radioactive elements that help to heat this layer at the expense of the interior. The core of Mars is liquid and large, ∼1830 kilometers, which means that the mantle has only one rocky layer rather than two like the Earth has. These results provide a preliminary structure of Mars that helps to constrain the different theories explaining the chemistry and internal dynamics of the planet. </jats:p> <jats:p> <jats:italic>Science</jats:italic> , abf2966, abf8966, abi7730, this issue p. <jats:related-article issue="6553" page="434" related-article-type="in-this-issue" vol="373">434</jats:related-article> , p. <jats:related-article issue="6553" page="438" related-article-type="in-this-issue" vol="373">438</jats:related-article> , p. <jats:related-article issue="6553" page="443" related-article-type="in-this-issue" vol="373">443</jats:related-article> see also abj8914, p. <jats:related-article issue="6553" page="388" related-article-type="in-this-issue" vol="373">388</jats:related-article> </jats:p>
Palabras clave: Multidisciplinary.
Pp. 434-438
Thickness and structure of the martian crust from InSight seismic data
Brigitte Knapmeyer-Endrun; Mark P. Panning; Felix Bissig; Rakshit Joshi; Amir Khan; Doyeon Kim; Vedran Lekić; Benoit Tauzin; Saikiran Tharimena; Matthieu Plasman; Nicolas Compaire; Raphael F. Garcia; Ludovic Margerin; Martin Schimmel; Éléonore Stutzmann; Nicholas Schmerr; Ebru Bozdağ; Ana-Catalina Plesa; Mark A. Wieczorek; Adrien Broquet; Daniele Antonangeli; Scott M. McLennan; Henri Samuel; Chloé Michaut; Lu Pan; Suzanne E. Smrekar; Catherine L. Johnson; Nienke Brinkman; Anna Mittelholz; Attilio Rivoldini; Paul M. Davis; Philippe Lognonné; Baptiste Pinot; John-Robert Scholz; Simon Stähler; Martin Knapmeyer; Martin van Driel; Domenico Giardini; W. Bruce Banerdt
<jats:title>Single seismometer structure</jats:title> <jats:p> Because of the lack of direct seismic observations, the interior structure of Mars has been a mystery. Khan <jats:italic>et al.</jats:italic> , Knapmeyer-Endrun <jats:italic>et al.</jats:italic> , and Stähler <jats:italic>et al.</jats:italic> used recently detected marsquakes from the seismometer deployed during the InSight mission to map the interior of Mars (see the Perspective by Cottaar and Koelemeijer). Mars likely has a 24- to 72-kilometer-thick crust with a very deep lithosphere close to 500 kilometers. Similar to the Earth, a low-velocity layer probably exists beneath the lithosphere. The crust of Mars is likely highly enriched in radioactive elements that help to heat this layer at the expense of the interior. The core of Mars is liquid and large, ∼1830 kilometers, which means that the mantle has only one rocky layer rather than two like the Earth has. These results provide a preliminary structure of Mars that helps to constrain the different theories explaining the chemistry and internal dynamics of the planet. </jats:p> <jats:p> <jats:italic>Science</jats:italic> , abf2966, abf8966, abi7730, this issue p. <jats:related-article issue="6553" page="434" related-article-type="in-this-issue" vol="373">434</jats:related-article> , p. <jats:related-article issue="6553" page="438" related-article-type="in-this-issue" vol="373">438</jats:related-article> , p. <jats:related-article issue="6553" page="443" related-article-type="in-this-issue" vol="373">443</jats:related-article> see also abj8914, p. <jats:related-article issue="6553" page="388" related-article-type="in-this-issue" vol="373">388</jats:related-article> </jats:p>
Palabras clave: Multidisciplinary.
Pp. 438-443