Catálogo de publicaciones - revistas

Compartir en
redes sociales


Science

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde mar. 1997 / hasta dic. 2023 Science Journals

Información

Tipo de recurso:

revistas

ISSN impreso

0036-8075

ISSN electrónico

1095-9203

Editor responsable

American Association for the Advancement of Science (AAAS)

País de edición

Estados Unidos

Fecha de publicación

Cobertura temática

Tabla de contenidos

Polymeric fire-extinguishing coatings

Caroline Ash; Jesse Smith (eds.)

Palabras clave: Multidisciplinary.

Pp. 406.4-407

Research experiences and social justice

Caroline Ash; Jesse Smith (eds.)

Palabras clave: Multidisciplinary.

Pp. 406.5-407

Coat, dope, peel

Caroline Ash; Jesse Smith (eds.)

Palabras clave: Multidisciplinary.

Pp. 406.6-407

Albumin's many talents

Caroline Ash; Jesse Smith (eds.)

Palabras clave: Multidisciplinary.

Pp. 406.7-407

Structure of an AMPK complex in an inactive, ATP-bound state

Yan YanORCID; Somnath MukherjeeORCID; Kaleeckal G. HarikumarORCID; Timothy S. StrutzenbergORCID; X. Edward ZhouORCID; Kelly Suino-Powell; Ting-Hai XuORCID; Ryan D. SheldonORCID; Jared LampORCID; Joseph S. BrunzelleORCID; Katarzyna Radziwon; Abigail EllisORCID; Scott J. NovickORCID; Irving E. Vega; Russell G. JonesORCID; Laurence J. MillerORCID; H. Eric XuORCID; Patrick R. GriffinORCID; Anthony A. Kossiakoff; Karsten MelcherORCID

<jats:title>How to catch a dynamic state</jats:title> <jats:p> AMP-activated protein kinase (AMPK) is a key sensor of energy status in eukaryotes. Its dynamic structure is regulated by allosteric factors including phosphorylation and binding of nucleotides and metabolites. Yan <jats:italic>et al.</jats:italic> developed conformation-specific antibodies that trap AMPK in a fully inactive state that has experienced a large, domain-level rotation. Biophysical experiments in cells and in vitro are consistent with the structural work and support a model in which the activation loop is fully exposed in the completely inactive, dephosphorylated state. These structures inform our understanding of the complex allosteric behavior in this crucial metabolic regulator. </jats:p> <jats:p> <jats:italic>Science</jats:italic> , abe7565, this issue p. <jats:related-article issue="6553" page="413" related-article-type="in-this-issue" vol="373">413</jats:related-article> </jats:p>

Palabras clave: Multidisciplinary.

Pp. 413-419

Plant “helper” immune receptors are Ca 2+ -permeable nonselective cation channels

Pierre JacobORCID; Nak Hyun KimORCID; Feihua WuORCID; Farid El-KasmiORCID; Yuan ChiORCID; William G. WaltonORCID; Oliver J. FurzerORCID; Adam D. LietzanORCID; Sruthi Sunil; Korina Kempthorn; Matthew R. RedinboORCID; Zhen-Ming PeiORCID; Li WanORCID; Jeffery L. DanglORCID

<jats:title>Calcium signaling for host cell death</jats:title> <jats:p> In response to microbial pathogens, some plants kill off their own cells to limit further spread of infection. The Toll/Interleukin-1 receptor/Resistance class of nucleotide-binding leucine-rich repeat receptors (known as TNLs) function in plants as immune receptors. These TNLs work together with a dedicated set of helper proteins. Jacob <jats:italic>et al.</jats:italic> reveal the structure of one of these helpers known as NRG1 (N REQUIREMENT GENE 1). The structure resembles a known animal cation channel. The authors demonstrate that helper NLRs directly control calcium ion influx to initiate host cell death, providing a mechanism for TNL outputs. </jats:p> <jats:p> <jats:italic>Science</jats:italic> , abg7917, this issue p. <jats:related-article issue="6553" page="420" related-article-type="in-this-issue" vol="373">420</jats:related-article> </jats:p>

Palabras clave: Multidisciplinary.

Pp. 420-425

Peta–electron volt gamma-ray emission from the Crab Nebula

; Zhen CaoORCID; F. AharonianORCID; Q. An; Axikegu; L. X. Bai; Y. X. Bai; Y. W. BaoORCID; D. BastieriORCID; X. J. BiORCID; Y. J. Bi; H. Cai; J. T. Cai; Zhe Cao; J. ChangORCID; J. F. Chang; B. M. Chen; E. S. Chen; J. Chen; Liang ChenORCID; Liang Chen; Long Chen; M. J. Chen; M. L. Chen; Q. H. ChenORCID; S. H. Chen; S. Z. ChenORCID; T. L. ChenORCID; X. L. Chen; Y. Chen; N. Cheng; Y. D. ChengORCID; S. W. CuiORCID; X. H. CuiORCID; Y. D. Cui; B. D’Ettorre Piazzoli; B. Z. DaiORCID; H. L. Dai; Z. G. Dai; Danzengluobu; D. della VolpeORCID; X. J. Dong; K. K. Duan; J. H. FanORCID; Y. Z. FanORCID; Z. X. Fan; J. Fang; K. FangORCID; C. F. FengORCID; L. Feng; S. H. Feng; Y. L. Feng; B. Gao; C. D. Gao; L. Q. Gao; Q. Gao; W. GaoORCID; M. M. Ge; L. S. Geng; G. H. GongORCID; Q. B. Gou; M. H. Gu; F. L. Guo; J. G. GuoORCID; X. L. Guo; Y. Q. Guo; Y. Y. Guo; Y. A. HanORCID; H. H. HeORCID; H. N. HeORCID; J. C. He; S. L. He; X. B. He; Y. He; M. HellerORCID; Y. K. Hor; C. Hou; X. Hou; H. B. Hu; S. Hu; S. C. Hu; X. J. Hu; D. H. Huang; Q. L. Huang; W. H. Huang; X. T. HuangORCID; X. Y. Huang; Z. C. Huang; F. Ji; X. L. Ji; H. Y. Jia; K. Jiang; Z. J. Jiang; C. Jin; T. Ke; D. KuleshovORCID; K. Levochkin; B. B. Li; Cheng Li; Cong LiORCID; F. Li; H. B. Li; H. C. Li; H. Y. Li; Jian Li; Jie Li; K. Li; W. L. Li; X. R. Li; Xin Li; Xin Li; Y. Li; Y. Z. Li; Zhe Li; Zhuo Li; E. W. LiangORCID; Y. F. Liang; S. J. LinORCID; B. LiuORCID; C. Liu; D. Liu; H. Liu; H. D. LiuORCID; J. Liu; J. L. Liu; J. S. Liu; J. Y. Liu; M. Y. Liu; R. Y. LiuORCID; S. M. LiuORCID; W. Liu; Y. Liu; Y. N. Liu; Z. X. Liu; W. J. LongORCID; R. Lu; H. K. Lv; B. Q. MaORCID; L. L. Ma; X. H. MaORCID; J. R. MaoORCID; A. Masood; Z. Min; W. MitthumsiriORCID; T. Montaruli; Y. C. Nan; B. Y. Pang; P. Pattarakijwanich; Z. Y. PeiORCID; M. Y. Qi; Y. Q. Qi; B. Q. Qiao; J. J. Qin; D. RuffoloORCID; V. Rulev; A. SaizORCID; L. ShaoORCID; O. Shchegolev; X. D. Sheng; J. Y. Shi; H. C. Song; Yu. V. StenkinORCID; V. Stepanov; Y. Su; Q. N. Sun; X. N. SunORCID; Z. B. Sun; P. H. T. TamORCID; Z. B. TangORCID; W. W. Tian; B. D. Wang; C. Wang; H. Wang; H. G. Wang; J. C. Wang; J. S. WangORCID; L. P. Wang; L. Y. WangORCID; R. N. Wang; Wei WangORCID; Wei Wang; X. G. WangORCID; X. J. WangORCID; X. Y. Wang; Y. Wang; Y. D. Wang; Y. J. Wang; Y. P. Wang; Z. H. Wang; Z. X. Wang; Zhen Wang; Zheng Wang; D. M. WeiORCID; J. J. Wei; Y. J. Wei; T. Wen; C. Y. Wu; H. R. Wu; S. Wu; W. X. Wu; X. F. WuORCID; S. Q. Xi; J. Xia; J. J. Xia; G. M. Xiang; D. X. Xiao; G. Xiao; H. B. Xiao; G. G. Xin; Y. L. XinORCID; Y. Xing; D. L. Xu; R. X. Xu; L. Xue; D. H. Yan; J. Z. Yan; C. W. Yang; F. F. YangORCID; J. Y. Yang; L. L. Yang; M. J. Yang; R. Z. YangORCID; S. B. Yang; Y. H. Yao; Z. G. YaoORCID; Y. M. Ye; L. Q. YinORCID; N. Yin; X. H. You; Z. Y. You; Y. H. Yu; Q. YuanORCID; H. D. ZengORCID; T. X. Zeng; W. Zeng; Z. K. Zeng; M. ZhaORCID; X. X. Zhai; B. B. ZhangORCID; H. M. Zhang; H. Y. Zhang; J. L. Zhang; J. W. Zhang; L. X. Zhang; Li Zhang; Lu Zhang; P. F. Zhang; P. P. Zhang; R. Zhang; S. R. Zhang; S. S. ZhangORCID; X. Zhang; X. P. Zhang; Y. F. Zhang; Y. L. Zhang; Yi ZhangORCID; Yong Zhang; B. Zhao; J. Zhao; L. Zhao; L. Z. Zhao; S. P. Zhao; F. Zheng; Y. Zheng; B. Zhou; H. Zhou; J. N. Zhou; P. Zhou; R. Zhou; X. X. Zhou; C. G. Zhu; F. R. Zhu; H. Zhu; K. J. Zhu; X. Zuo

<jats:title>High-energy photons from the Crab Nebula</jats:title> <jats:p>The Crab Nebula contains a pulsar that excites the surrounding gas to emit high-energy radiation. The combination of the pulsar's youth and nearby location makes the nebula the brightest gamma-ray source in the sky. The LHAASO Collaboration report observations of this source at energies of tera– to peta–electron volts, extending the spectrum of this prototypical object. They combine these data with observations at lower energies to model the physics of the emission process. The multiwave-length data can be explained by a combination of synchrotron radiation and inverse Compton scattering.</jats:p> <jats:p> <jats:italic>Science</jats:italic> , abg5137, this issue p. <jats:related-article issue="6553" page="425" related-article-type="in-this-issue" vol="373">425</jats:related-article> </jats:p>

Palabras clave: Multidisciplinary.

Pp. 425-430

Coherent manipulation of an Andreev spin qubit

M. HaysORCID; V. FatemiORCID; D. BoumanORCID; J. CerrilloORCID; S. DiamondORCID; K. SerniakORCID; T. ConnollyORCID; P. Krogstrup; J. NygårdORCID; A. Levy YeyatiORCID; A. GeresdiORCID; M. H. DevoretORCID

<jats:title>Superconducting spin qubit</jats:title> <jats:p> To date, the most promising solid-state approaches for developing quantum information-processing systems have been based on the circulating supercurrents of superconducting circuits and manipulating the spin properties of electrons in semiconductor quantum dots. Hays <jats:italic>et al.</jats:italic> combined the desirable aspects of both approaches, the scalability of the superconducting circuits and the compact footprint of the quantum dots, to design and fabricate a superconducting spin qubit (see the Perspective by Wendin and Shumeiko). This so-called Andreev spin qubit provides the opportunity to develop a new quantum information processing platform. </jats:p> <jats:p> <jats:italic>Science</jats:italic> , abf0345, this issue p. <jats:related-article issue="6553" page="430" related-article-type="in-this-issue" vol="373">430</jats:related-article> ; see also abk0929, p. <jats:related-article issue="6553" page="390" related-article-type="in-this-issue" vol="373">390</jats:related-article> </jats:p>

Palabras clave: Multidisciplinary.

Pp. 430-433

Upper mantle structure of Mars from InSight seismic data

Amir KhanORCID; Savas CeylanORCID; Martin van DrielORCID; Domenico GiardiniORCID; Philippe LognonnéORCID; Henri Samuel; Nicholas C. SchmerrORCID; Simon C. StählerORCID; Andrea C. DuranORCID; Quancheng HuangORCID; Doyeon KimORCID; Adrien BroquetORCID; Constantinos CharalambousORCID; John F. ClintonORCID; Paul M. DavisORCID; Mélanie DrilleauORCID; Foivos KarakostasORCID; Vedran LekicORCID; Scott M. McLennanORCID; Ross R. MaguireORCID; Chloé MichautORCID; Mark P. PanningORCID; William T. PikeORCID; Baptiste PinotORCID; Matthieu PlasmanORCID; John-Robert ScholzORCID; Rudolf Widmer-SchnidrigORCID; Tilman SpohnORCID; Suzanne E. SmrekarORCID; William B. BanerdtORCID

<jats:title>Single seismometer structure</jats:title> <jats:p> Because of the lack of direct seismic observations, the interior structure of Mars has been a mystery. Khan <jats:italic>et al.</jats:italic> , Knapmeyer-Endrun <jats:italic>et al.</jats:italic> , and Stähler <jats:italic>et al.</jats:italic> used recently detected marsquakes from the seismometer deployed during the InSight mission to map the interior of Mars (see the Perspective by Cottaar and Koelemeijer). Mars likely has a 24- to 72-kilometer-thick crust with a very deep lithosphere close to 500 kilometers. Similar to the Earth, a low-velocity layer probably exists beneath the lithosphere. The crust of Mars is likely highly enriched in radioactive elements that help to heat this layer at the expense of the interior. The core of Mars is liquid and large, ∼1830 kilometers, which means that the mantle has only one rocky layer rather than two like the Earth has. These results provide a preliminary structure of Mars that helps to constrain the different theories explaining the chemistry and internal dynamics of the planet. </jats:p> <jats:p> <jats:italic>Science</jats:italic> , abf2966, abf8966, abi7730, this issue p. <jats:related-article issue="6553" page="434" related-article-type="in-this-issue" vol="373">434</jats:related-article> , p. <jats:related-article issue="6553" page="438" related-article-type="in-this-issue" vol="373">438</jats:related-article> , p. <jats:related-article issue="6553" page="443" related-article-type="in-this-issue" vol="373">443</jats:related-article> see also abj8914, p. <jats:related-article issue="6553" page="388" related-article-type="in-this-issue" vol="373">388</jats:related-article> </jats:p>

Palabras clave: Multidisciplinary.

Pp. 434-438

Thickness and structure of the martian crust from InSight seismic data

Brigitte Knapmeyer-EndrunORCID; Mark P. PanningORCID; Felix BissigORCID; Rakshit JoshiORCID; Amir KhanORCID; Doyeon KimORCID; Vedran LekićORCID; Benoit TauzinORCID; Saikiran TharimenaORCID; Matthieu PlasmanORCID; Nicolas CompaireORCID; Raphael F. GarciaORCID; Ludovic MargerinORCID; Martin SchimmelORCID; Éléonore StutzmannORCID; Nicholas SchmerrORCID; Ebru BozdağORCID; Ana-Catalina Plesa; Mark A. WieczorekORCID; Adrien BroquetORCID; Daniele AntonangeliORCID; Scott M. McLennanORCID; Henri Samuel; Chloé MichautORCID; Lu PanORCID; Suzanne E. SmrekarORCID; Catherine L. JohnsonORCID; Nienke BrinkmanORCID; Anna MittelholzORCID; Attilio RivoldiniORCID; Paul M. DavisORCID; Philippe LognonnéORCID; Baptiste PinotORCID; John-Robert ScholzORCID; Simon StählerORCID; Martin KnapmeyerORCID; Martin van DrielORCID; Domenico GiardiniORCID; W. Bruce BanerdtORCID

<jats:title>Single seismometer structure</jats:title> <jats:p> Because of the lack of direct seismic observations, the interior structure of Mars has been a mystery. Khan <jats:italic>et al.</jats:italic> , Knapmeyer-Endrun <jats:italic>et al.</jats:italic> , and Stähler <jats:italic>et al.</jats:italic> used recently detected marsquakes from the seismometer deployed during the InSight mission to map the interior of Mars (see the Perspective by Cottaar and Koelemeijer). Mars likely has a 24- to 72-kilometer-thick crust with a very deep lithosphere close to 500 kilometers. Similar to the Earth, a low-velocity layer probably exists beneath the lithosphere. The crust of Mars is likely highly enriched in radioactive elements that help to heat this layer at the expense of the interior. The core of Mars is liquid and large, ∼1830 kilometers, which means that the mantle has only one rocky layer rather than two like the Earth has. These results provide a preliminary structure of Mars that helps to constrain the different theories explaining the chemistry and internal dynamics of the planet. </jats:p> <jats:p> <jats:italic>Science</jats:italic> , abf2966, abf8966, abi7730, this issue p. <jats:related-article issue="6553" page="434" related-article-type="in-this-issue" vol="373">434</jats:related-article> , p. <jats:related-article issue="6553" page="438" related-article-type="in-this-issue" vol="373">438</jats:related-article> , p. <jats:related-article issue="6553" page="443" related-article-type="in-this-issue" vol="373">443</jats:related-article> see also abj8914, p. <jats:related-article issue="6553" page="388" related-article-type="in-this-issue" vol="373">388</jats:related-article> </jats:p>

Palabras clave: Multidisciplinary.

Pp. 438-443