Catálogo de publicaciones - revistas

Compartir en
redes sociales


ACM Computing Surveys (CSUR)

Resumen/Descripción – provisto por la editorial en inglés
A journal of the Association for Computing Machinery (ACM), which publishes surveys, tutorials, and special reports on all areas of computing research. Volumes are published yearly in four issues appearing in March, June, September, and December.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde mar. 1969 / hasta dic. 2023 ACM Digital Library

Información

Tipo de recurso:

revistas

ISSN impreso

0360-0300

ISSN electrónico

1557-7341

Editor responsable

Association for Computing Machinery (ACM)

País de edición

Estados Unidos

Fecha de publicación

Tabla de contenidos

Multiagent systems

Victor R. Lesser

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 340-342

The logic of common sense

Vladimir Lifschitz

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 343-345

Models of deliberation in the social sciences

R. P. Loui

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 346-348

AI systems are dumb because AI researchers are too clever

Jacques Pitrat

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 349-350

Don't leave your plan on the shelf

Austin Tate

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 351-352

On the role of abduction

Pietro Torasso; Luca Console; Luigi Portinale; Daniele Theseider Dupré

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 353-355

On reasoning from data

David Waltz; Simon Kasif

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 356-359

The economic approach to artificial intelligence

Michael P. Wellman

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 360-362

Imagistic reasoning

Kenneth Yip; Feng Zhao; Elisha Sacks

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 363-365

Software pipelining

Vicki H. Allan; Reese B. Jones; Randall M. Lee; Stephen J. Allan

<jats:p>Utilizing parallelism at the instruction level is an important way to improve performance. Because the time spent in loop execution dominates total execution time, a large body of optimizations focuses on decreasing the time to execute each iteration. Software pipelining is a technique that reforms the loop so that a faster execution rate is realized. Iterations are executed in overlapped fashion to increase parallelism.</jats:p> <jats:p> Let { <jats:italic>ABC</jats:italic> } <jats:sup> <jats:italic>n</jats:italic> </jats:sup> represent a loop containing operations <jats:italic>A, B, C</jats:italic> that is executed <jats:italic>n</jats:italic> times. Although the operations of a single iteration can be parallelized, more parallelism may be achieved if the entire loop is considered rather than a single iteration. The software pipelining transformation utilizes the fact that a loop { <jats:italic>ABC</jats:italic> } <jats:sup> <jats:italic>n</jats:italic> </jats:sup> is equivalent to <jats:italic>A</jats:italic> { <jats:italic>BCA</jats:italic> } <jats:sup> <jats:italic>n</jats:italic> −1 </jats:sup> <jats:italic>BC</jats:italic> . Although the operations contained in the loop do not change, the operations are from different iterations of the original loop. </jats:p> <jats:p>Various algorithms for software pipelining exist. A comparison of the alternative methods for software pipelining is presented. The relationships between the methods are explored and possibilities for improvement highlighted.</jats:p>

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 367-432