Catálogo de publicaciones - revistas
Nature
Resumen/Descripción – provisto por la editorial en inglés
Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde jul. 2012 / hasta dic. 2023 | Nature.com | ||
No detectada | desde jul. 2006 / hasta ago. 2012 | Ovid |
Información
Tipo de recurso:
revistas
ISSN impreso
0028-0836
ISSN electrónico
1476-4687
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
1869-
Tabla de contenidos
Cardiovascular diseases disrupt the bone-marrow niche
Tomer Itkin; Shahin Rafii
Palabras clave: Multidisciplinary.
Pp. 515-517
The challenges and opportunities of battery-powered flight
Venkatasubramanian Viswanathan; Alan H. Epstein; Yet-Ming Chiang; Esther Takeuchi; Marty Bradley; John Langford; Michael Winter
Palabras clave: Multidisciplinary.
Pp. 519-525
A radio transient with unusually slow periodic emission
N. Hurley-Walker; X. Zhang; A. Bahramian; S. J. McSweeney; T. N. O’Doherty; P. J. Hancock; J. S. Morgan; G. E. Anderson; G. H. Heald; T. J. Galvin
Palabras clave: Multidisciplinary.
Pp. 526-530
Time-crystalline eigenstate order on a quantum processor
Xiao Mi; Matteo Ippoliti; Chris Quintana; Ami Greene; Zijun Chen; Jonathan Gross; Frank Arute; Kunal Arya; Juan Atalaya; Ryan Babbush; Joseph C. Bardin; Joao Basso; Andreas Bengtsson; Alexander Bilmes; Alexandre Bourassa; Leon Brill; Michael Broughton; Bob B. Buckley; David A. Buell; Brian Burkett; Nicholas Bushnell; Benjamin Chiaro; Roberto Collins; William Courtney; Dripto Debroy; Sean Demura; Alan R. Derk; Andrew Dunsworth; Daniel Eppens; Catherine Erickson; Edward Farhi; Austin G. Fowler; Brooks Foxen; Craig Gidney; Marissa Giustina; Matthew P. Harrigan; Sean D. Harrington; Jeremy Hilton; Alan Ho; Sabrina Hong; Trent Huang; Ashley Huff; William J. Huggins; L. B. Ioffe; Sergei V. Isakov; Justin Iveland; Evan Jeffrey; Zhang Jiang; Cody Jones; Dvir Kafri; Tanuj Khattar; Seon Kim; Alexei Kitaev; Paul V. Klimov; Alexander N. Korotkov; Fedor Kostritsa; David Landhuis; Pavel Laptev; Joonho Lee; Kenny Lee; Aditya Locharla; Erik Lucero; Orion Martin; Jarrod R. McClean; Trevor McCourt; Matt McEwen; Kevin C. Miao; Masoud Mohseni; Shirin Montazeri; Wojciech Mruczkiewicz; Ofer Naaman; Matthew Neeley; Charles Neill; Michael Newman; Murphy Yuezhen Niu; Thomas E. O’Brien; Alex Opremcak; Eric Ostby; Balint Pato; Andre Petukhov; Nicholas C. Rubin; Daniel Sank; Kevin J. Satzinger; Vladimir Shvarts; Yuan Su; Doug Strain; Marco Szalay; Matthew D. Trevithick; Benjamin Villalonga; Theodore White; Z. Jamie Yao; Ping Yeh; Juhwan Yoo; Adam Zalcman; Hartmut Neven; Sergio Boixo; Vadim Smelyanskiy; Anthony Megrant; Julian Kelly; Yu Chen; S. L. Sondhi; Roderich Moessner; Kostyantyn Kechedzhi; Vedika Khemani; Pedram Roushan
<jats:title>Abstract</jats:title><jats:p>Quantum many-body systems display rich phase structure in their low-temperature equilibrium states<jats:sup>1</jats:sup>. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases<jats:sup>2–8</jats:sup> that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC)<jats:sup>7,9–15</jats:sup>. Concretely, dynamical phases can be defined in periodically driven many-body-localized (MBL) systems via the concept of eigenstate order<jats:sup>7,16,17</jats:sup>. In eigenstate-ordered MBL phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, or from regimes in which the dynamics of a few select states can mask typical behaviour. Here we implement tunable controlled-phase (CPHASE) gates on an array of superconducting qubits to experimentally observe an MBL-DTC and demonstrate its characteristic spatiotemporal response for generic initial states<jats:sup>7,9,10</jats:sup>. Our work employs a time-reversal protocol to quantify the impact of external decoherence, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. Furthermore, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to studying non-equilibrium phases of matter on quantum processors.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 531-536
Quantum register of fermion pairs
Thomas Hartke; Botond Oreg; Ningyuan Jia; Martin Zwierlein
Palabras clave: Multidisciplinary.
Pp. 537-541
Burning plasma achieved in inertial fusion
A. B. Zylstra; O. A. Hurricane; D. A. Callahan; A. L. Kritcher; J. E. Ralph; H. F. Robey; J. S. Ross; C. V. Young; K. L. Baker; D. T. Casey; T. Döppner; L. Divol; M. Hohenberger; S. Le Pape; A. Pak; P. K. Patel; R. Tommasini; S. J. Ali; P. A. Amendt; L. J. Atherton; B. Bachmann; D. Bailey; L. R. Benedetti; L. Berzak Hopkins; R. Betti; S. D. Bhandarkar; J. Biener; R. M. Bionta; N. W. Birge; E. J. Bond; D. K. Bradley; T. Braun; T. M. Briggs; M. W. Bruhn; P. M. Celliers; B. Chang; T. Chapman; H. Chen; C. Choate; A. R. Christopherson; D. S. Clark; J. W. Crippen; E. L. Dewald; T. R. Dittrich; M. J. Edwards; W. A. Farmer; J. E. Field; D. Fittinghoff; J. Frenje; J. Gaffney; M. Gatu Johnson; S. H. Glenzer; G. P. Grim; S. Haan; K. D. Hahn; G. N. Hall; B. A. Hammel; J. Harte; E. Hartouni; J. E. Heebner; V. J. Hernandez; H. Herrmann; M. C. Herrmann; D. E. Hinkel; D. D. Ho; J. P. Holder; W. W. Hsing; H. Huang; K. D. Humbird; N. Izumi; L. C. Jarrott; J. Jeet; O. Jones; G. D. Kerbel; S. M. Kerr; S. F. Khan; J. Kilkenny; Y. Kim; H. Geppert Kleinrath; V. Geppert Kleinrath; C. Kong; J. M. Koning; J. J. Kroll; M. K. G. Kruse; B. Kustowski; O. L. Landen; S. Langer; D. Larson; N. C. Lemos; J. D. Lindl; T. Ma; M. J. MacDonald; B. J. MacGowan; A. J. Mackinnon; S. A. MacLaren; A. G. MacPhee; M. M. Marinak; D. A. Mariscal; E. V. Marley; L. Masse; K. Meaney; N. B. Meezan; P. A. Michel; M. Millot; J. L. Milovich; J. D. Moody; A. S. Moore; J. W. Morton; T. Murphy; K. Newman; J.-M. G. Di Nicola; A. Nikroo; R. Nora; M. V. Patel; L. J. Pelz; J. L. Peterson; Y. Ping; B. B. Pollock; M. Ratledge; N. G. Rice; H. Rinderknecht; M. Rosen; M. S. Rubery; J. D. Salmonson; J. Sater; S. Schiaffino; D. J. Schlossberg; M. B. Schneider; C. R. Schroeder; H. A. Scott; S. M. Sepke; K. Sequoia; M. W. Sherlock; S. Shin; V. A. Smalyuk; B. K. Spears; P. T. Springer; M. Stadermann; S. Stoupin; D. J. Strozzi; L. J. Suter; C. A. Thomas; R. P. J. Town; E. R. Tubman; C. Trosseille; P. L. Volegov; C. R. Weber; K. Widmann; C. Wild; C. H. Wilde; B. M. Van Wonterghem; D. T. Woods; B. N. Woodworth; M. Yamaguchi; S. T. Yang; G. B. Zimmerman
<jats:title>Abstract</jats:title><jats:p>Obtaining a burning plasma is a critical step towards self-sustaining fusion energy<jats:sup>1</jats:sup>. A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn, enabling high energy gain. After decades of fusion research, here we achieve a burning-plasma state in the laboratory. These experiments were conducted at the US National Ignition Facility, a laser facility delivering up to 1.9 megajoules of energy in pulses with peak powers up to 500 terawatts. We use the lasers to generate X-rays in a radiation cavity to indirectly drive a fuel-containing capsule via the X-ray ablation pressure, which results in the implosion process compressing and heating the fuel via mechanical work. The burning-plasma state was created using a strategy to increase the spatial scale of the capsule<jats:sup>2,3</jats:sup> through two different implosion concepts<jats:sup>4–7</jats:sup>. These experiments show fusion self-heating in excess of the mechanical work injected into the implosions, satisfying several burning-plasma metrics<jats:sup>3,8</jats:sup>. Additionally, we describe a subset of experiments that appear to have crossed the static self-heating boundary, where fusion heating surpasses the energy losses from radiation and conduction. These results provide an opportunity to study α-particle-dominated plasmas and burning-plasma physics in the laboratory.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 542-548
Deep physical neural networks trained with backpropagation
Logan G. Wright; Tatsuhiro Onodera; Martin M. Stein; Tianyu Wang; Darren T. Schachter; Zoey Hu; Peter L. McMahon
<jats:title>Abstract</jats:title><jats:p>Deep-learning models have become pervasive tools in science and engineering. However, their energy requirements now increasingly limit their scalability<jats:sup>1</jats:sup>. Deep-learning accelerators<jats:sup>2–9</jats:sup> aim to perform deep learning energy-efficiently, usually targeting the inference phase and often by exploiting physical substrates beyond conventional electronics. Approaches so far<jats:sup>10–22</jats:sup> have been unable to apply the backpropagation algorithm to train unconventional novel hardware in situ. The advantages of backpropagation have made it the de facto training method for large-scale neural networks, so this deficiency constitutes a major impediment. Here we introduce a hybrid in situ–in silico algorithm, called physics-aware training, that applies backpropagation to train controllable physical systems. Just as deep learning realizes computations with deep neural networks made from layers of mathematical functions, our approach allows us to train deep physical neural networks made from layers of controllable physical systems, even when the physical layers lack any mathematical isomorphism to conventional artificial neural network layers. To demonstrate the universality of our approach, we train diverse physical neural networks based on optics, mechanics and electronics to experimentally perform audio and image classification tasks. Physics-aware training combines the scalability of backpropagation with the automatic mitigation of imperfections and noise achievable with in situ algorithms. Physical neural networks have the potential to perform machine learning faster and more energy-efficiently than conventional electronic processors and, more broadly, can endow physical systems with automatically designed physical functionalities, for example, for robotics<jats:sup>23–26</jats:sup>, materials<jats:sup>27–29</jats:sup> and smart sensors<jats:sup>30–32</jats:sup>.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 549-555
Emergent interface vibrational structure of oxide superlattices
Eric R. Hoglund; De-Liang Bao; Andrew O’Hara; Sara Makarem; Zachary T. Piontkowski; Joseph R. Matson; Ajay K. Yadav; Ryan C. Haislmaier; Roman Engel-Herbert; Jon F. Ihlefeld; Jayakanth Ravichandran; Ramamoorthy Ramesh; Joshua D. Caldwell; Thomas E. Beechem; John A. Tomko; Jordan A. Hachtel; Sokrates T. Pantelides; Patrick E. Hopkins; James M. Howe
<jats:title>Abstract</jats:title><jats:p>As the length scales of materials decrease, the heterogeneities associated with interfaces become almost as important as the surrounding materials. This has led to extensive studies of emergent electronic and magnetic interface properties in superlattices<jats:sup>1–9</jats:sup>. However, the interfacial vibrations that affect the phonon-mediated properties, such as thermal conductivity<jats:sup>10,11</jats:sup>, are measured using macroscopic techniques that lack spatial resolution. Although it is accepted that intrinsic phonons change near boundaries<jats:sup>12,13</jats:sup>, the physical mechanisms and length scales through which interfacial effects influence materials remain unclear. Here we demonstrate the localized vibrational response of interfaces in strontium titanate–calcium titanate superlattices by combining advanced scanning transmission electron microscopy imaging and spectroscopy, density functional theory calculations and ultrafast optical spectroscopy. Structurally diffuse interfaces that bridge the bounding materials are observed and this local structure creates phonon modes that determine the global response of the superlattice once the spacing of the interfaces approaches the phonon spatial extent. Our results provide direct visualization of the progression of the local atomic structure and interface vibrations as they come to determine the vibrational response of an entire superlattice. Direct observation of such local atomic and vibrational phenomena demonstrates that their spatial extent needs to be quantified to understand macroscopic behaviour. Tailoring interfaces, and knowing their local vibrational response, provides a means of pursuing designer solids with emergent infrared and thermal responses.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 556-561
Unconventional spectral signature of Tc in a pure d-wave superconductor
Su-Di Chen; Makoto Hashimoto; Yu He; Dongjoon Song; Jun-Feng He; Ying-Fei Li; Shigeyuki Ishida; Hiroshi Eisaki; Jan Zaanen; Thomas P. Devereaux; Dung-Hai Lee; Dong-Hui Lu; Zhi-Xun Shen
Palabras clave: Multidisciplinary.
Pp. 562-567