Catálogo de publicaciones - revistas

Compartir en
redes sociales


Nature

Resumen/Descripción – provisto por la editorial en inglés
Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 2012 / hasta dic. 2023 Nature.com
No detectada desde jul. 2006 / hasta ago. 2012 Ovid

Información

Tipo de recurso:

revistas

ISSN impreso

0028-0836

ISSN electrónico

1476-4687

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Tabla de contenidos

Direct observation of ultrafast hydrogen bond strengthening in liquid water

Jie YangORCID; Riccardo Dettori; J. Pedro F. NunesORCID; Nanna H. ListORCID; Elisa Biasin; Martin CenturionORCID; Zhijiang ChenORCID; Amy A. CordonesORCID; Daniel P. Deponte; Tony F. Heinz; Michael E. Kozina; Kathryn LedbetterORCID; Ming-Fu LinORCID; Aaron M. LindenbergORCID; Mianzhen MoORCID; Anders Nilsson; Xiaozhe ShenORCID; Thomas J. A. WolfORCID; Davide DonadioORCID; Kelly J. GaffneyORCID; Todd J. MartinezORCID; Xijie WangORCID

Palabras clave: Multidisciplinary.

Pp. 531-535

High aboveground carbon stock of African tropical montane forests

Aida Cuni-SanchezORCID; Martin J. P. SullivanORCID; Philip J. PlattsORCID; Simon L. LewisORCID; Rob Marchant; Gérard Imani; Wannes HubauORCID; Iveren Abiem; Hari AdhikariORCID; Tomas AlbrechtORCID; Jan AltmanORCID; Christian Amani; Abreham B. Aneseyee; Valerio AvitabileORCID; Lindsay BaninORCID; Rodrigue Batumike; Marijn BautersORCID; Hans BeeckmanORCID; Serge K. Begne; Amy C. Bennett; Robert BitarihoORCID; Pascal BoeckxORCID; Jan Bogaert; Achim BräuningORCID; Franklin Bulonvu; Neil D. Burgess; Kim CaldersORCID; Colin Chapman; Hazel ChapmanORCID; James ComiskeyORCID; Thales de Haulleville; Mathieu DecuyperORCID; Ben DeVries; Jiri DolezalORCID; Vincent DroissartORCID; Corneille Ewango; Senbeta Feyera; Aster Gebrekirstos; Roy GereauORCID; Martin Gilpin; Dismas Hakizimana; Jefferson HallORCID; Alan Hamilton; Olivier Hardy; Terese Hart; Janne HeiskanenORCID; Andreas Hemp; Martin HeroldORCID; Ulrike Hiltner; David HorakORCID; Marie-Noel Kamdem; Charles Kayijamahe; David KenfackORCID; Mwangi J. Kinyanjui; Julia Klein; Janvier Lisingo; Jon Lovett; Mark Lung; Jean-Remy Makana; Yadvinder MalhiORCID; Andrew Marshall; Emanuel H. MartinORCID; Edward T. A. MitchardORCID; Alexandra MorelORCID; John T. Mukendi; Tom Muller; Felix NchuORCID; Brigitte NyirambangutseORCID; Joseph OkelloORCID; Kelvin S.-H. PehORCID; Petri Pellikka; Oliver L. PhillipsORCID; Andrew PlumptreORCID; Lan Qie; Francesco Rovero; Moses N. Sainge; Christine B. SchmittORCID; Ondrej Sedlacek; Alain S. K. NguteORCID; Douglas SheilORCID; Demisse Sheleme; Tibebu Y. Simegn; Murielle Simo-Droissart; Bonaventure SonkéORCID; Teshome SoromessaORCID; Terry Sunderland; Miroslav Svoboda; Hermann Taedoumg; James TaplinORCID; David TaylorORCID; Sean C. ThomasORCID; Jonathan Timberlake; Darlington Tuagben; Peter Umunay; Eustrate UzabahoORCID; Hans VerbeeckORCID; Jason VleminckxORCID; Göran WallinORCID; Charlotte Wheeler; Simon WillcockORCID; John T. Woods; Etienne Zibera

Palabras clave: Multidisciplinary.

Pp. 536-542

Genome of a middle Holocene hunter-gatherer from Wallacea

Selina CarlhoffORCID; Akin Duli; Kathrin NägeleORCID; Muhammad Nur; Laurits Skov; Iwan Sumantri; Adhi Agus Oktaviana; Budianto Hakim; Basran BurhanORCID; Fardi Ali Syahdar; David P. McGahanORCID; David Bulbeck; Yinika L. PerstonORCID; Kim NewmanORCID; Andi Muhammad Saiful; Marlon Ririmasse; Stephen Chia; Hasanuddin; Dwia Aries Tina Pulubuhu; Suryatman; Supriadi; Choongwon JeongORCID; Benjamin M. PeterORCID; Kay PrüferORCID; Adam Powell; Johannes KrauseORCID; Cosimo PosthORCID; Adam BrummORCID

<jats:title>Abstract</jats:title><jats:p>Much remains unknown about the population history of early modern humans in southeast Asia, where the archaeological record is sparse and the tropical climate is inimical to the preservation of ancient human DNA<jats:sup>1</jats:sup>. So far, only two low-coverage pre-Neolithic human genomes have been sequenced from this region. Both are from mainland Hòabìnhian hunter-gatherer sites: Pha Faen in Laos, dated to 7939–7751 calibrated years before present (yr cal <jats:sc>bp;</jats:sc> present taken as <jats:sc>ad</jats:sc> 1950), and Gua Cha in Malaysia (4.4–4.2 kyr cal <jats:sc>bp</jats:sc>)<jats:sup>1</jats:sup>. Here we report, to our knowledge, the first ancient human genome from Wallacea, the oceanic island zone between the Sunda Shelf (comprising mainland southeast Asia and the continental islands of western Indonesia) and Pleistocene Sahul (Australia–New Guinea). We extracted DNA from the petrous bone of a young female hunter-gatherer buried 7.3–7.2 kyr cal <jats:sc>bp</jats:sc> at the limestone cave of Leang Panninge<jats:sup>2</jats:sup> in South Sulawesi, Indonesia. Genetic analyses show that this pre-Neolithic forager, who is associated with the ‘Toalean’ technocomplex<jats:sup>3,4</jats:sup>, shares most genetic drift and morphological similarities with present-day Papuan and Indigenous Australian groups, yet represents a previously unknown divergent human lineage that branched off around the time of the split between these populations approximately 37,000 years ago<jats:sup>5</jats:sup>. We also describe Denisovan and deep Asian-related ancestries in the Leang Panninge genome, and infer their large-scale displacement from the region today.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 543-547

Fair algorithms for selecting citizens’ assemblies

Bailey FlaniganORCID; Paul GölzORCID; Anupam Gupta; Brett HennigORCID; Ariel D. ProcacciaORCID

<jats:title>Abstract</jats:title><jats:p>Globally, there has been a recent surge in ‘citizens’ assemblies’<jats:sup>1</jats:sup>, which are a form of civic participation in which a panel of randomly selected constituents contributes to questions of policy. The random process for selecting this panel should satisfy two properties. First, it must produce a panel that is representative of the population. Second, in the spirit of democratic equality, individuals would ideally be selected to serve on this panel with equal probability<jats:sup>2,3</jats:sup>. However, in practice these desiderata are in tension owing to differential participation rates across subpopulations<jats:sup>4,5</jats:sup>. Here we apply ideas from fair division to develop selection algorithms that satisfy the two desiderata simultaneously to the greatest possible extent: our selection algorithms choose representative panels while selecting individuals with probabilities as close to equal as mathematically possible, for many metrics of ‘closeness to equality’. Our implementation of one such algorithm has already been used to select more than 40 citizens’ assemblies around the world. As we demonstrate using data from ten citizens’ assemblies, adopting our algorithm over a benchmark representing the previous state of the art leads to substantially fairer selection probabilities. By contributing a fairer, more principled and deployable algorithm, our work puts the practice of sortition on firmer foundations. Moreover, our work establishes citizens’ assemblies as a domain in which insights from the field of fair division can lead to high-impact applications.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 548-552

Oxytocin neurons enable social transmission of maternal behaviour

Ioana CarceaORCID; Naomi López Caraballo; Bianca J. Marlin; Rumi Ooyama; Justin S. Riceberg; Joyce M. Mendoza Navarro; Maya Opendak; Veronica E. Diaz; Luisa Schuster; Maria I. Alvarado Torres; Harper Lethin; Daniel Ramos; Jessica Minder; Sebastian L. Mendoza; Chloe J. Bair-Marshall; Grace H. Samadjopoulos; Shizu Hidema; Annegret FalknerORCID; Dayu LinORCID; Adam Mar; Youssef Z. Wadghiri; Katsuhiko Nishimori; Takefumi Kikusui; Kazutaka Mogi; Regina M. Sullivan; Robert C. FroemkeORCID

<jats:title>Abstract</jats:title><jats:p>Maternal care, including by non-biological parents, is important for offspring survival<jats:sup>1–8</jats:sup>. Oxytocin<jats:sup>1,2,9–15</jats:sup>, which is released by the hypothalamic paraventricular nucleus (PVN), is a critical maternal hormone. In mice, oxytocin enables neuroplasticity in the auditory cortex for maternal recognition of pup distress<jats:sup>15</jats:sup>. However, it is unclear how initial parental experience promotes hypothalamic signalling and cortical plasticity for reliable maternal care. Here we continuously monitored the behaviour of female virgin mice co-housed with an experienced mother and litter. This documentary approach was synchronized with neural recordings from the virgin PVN, including oxytocin neurons. These cells were activated as virgins were enlisted in maternal care by experienced mothers, who shepherded virgins into the nest and demonstrated pup retrieval. Virgins visually observed maternal retrieval, which activated PVN oxytocin neurons and promoted alloparenting. Thus rodents can acquire maternal behaviour by social transmission, providing a mechanism for adapting the brains of adult caregivers to infant needs via endogenous oxytocin.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 553-557

Cotranslational prolyl hydroxylation is essential for flavivirus biogenesis

Ranen Aviner; Kathy H. Li; Judith FrydmanORCID; Raul AndinoORCID

Palabras clave: Multidisciplinary.

Pp. 558-564

Antibody epitopes in vaccine-induced immune thrombotic thrombocytopaenia

Angela Huynh; John G. KeltonORCID; Donald M. ArnoldORCID; Mercy DakaORCID; Ishac NazyORCID

Palabras clave: Multidisciplinary.

Pp. 565-569

Tonic prime-boost of STING signalling mediates Niemann–Pick disease type C

Ting-Ting Chu; Xintao TuORCID; Kun YangORCID; Jianjun Wu; Joyce J. Repa; Nan YanORCID

Palabras clave: Multidisciplinary.

Pp. 570-575

Cycling cancer persister cells arise from lineages with distinct programs

Yaara Oren; Michael TsabarORCID; Michael S. CuocoORCID; Liat Amir-Zilberstein; Heidie F. Cabanos; Jan-Christian HütterORCID; Bomiao Hu; Pratiksha I. Thakore; Marcin Tabaka; Charles P. Fulco; William ColganORCID; Brandon M. CuevasORCID; Sara A. Hurvitz; Dennis J. Slamon; Amy Deik; Kerry A. Pierce; Clary ClishORCID; Aaron N. HataORCID; Elma Zaganjor; Galit Lahav; Katerina Politi; Joan S. BruggeORCID; Aviv RegevORCID

Palabras clave: Multidisciplinary.

Pp. 576-582

Highly accurate protein structure prediction with AlphaFold

John JumperORCID; Richard Evans; Alexander Pritzel; Tim GreenORCID; Michael Figurnov; Olaf Ronneberger; Kathryn Tunyasuvunakool; Russ Bates; Augustin Žídek; Anna Potapenko; Alex Bridgland; Clemens Meyer; Simon A. A. KohlORCID; Andrew J. Ballard; Andrew Cowie; Bernardino Romera-Paredes; Stanislav Nikolov; Rishub Jain; Jonas AdlerORCID; Trevor Back; Stig Petersen; David Reiman; Ellen Clancy; Michal Zielinski; Martin SteineggerORCID; Michalina PacholskaORCID; Tamas Berghammer; Sebastian Bodenstein; David SilverORCID; Oriol Vinyals; Andrew W. SeniorORCID; Koray Kavukcuoglu; Pushmeet Kohli; Demis HassabisORCID

<jats:title>Abstract</jats:title><jats:p>Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort<jats:sup>1–4</jats:sup>, the structures of around 100,000 unique proteins have been determined<jats:sup>5</jats:sup>, but this represents a small fraction of the billions of known protein sequences<jats:sup>6,7</jats:sup>. Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the ‘protein folding problem’<jats:sup>8</jats:sup>—has been an important open research problem for more than 50 years<jats:sup>9</jats:sup>. Despite recent progress<jats:sup>10–14</jats:sup>, existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14)<jats:sup>15</jats:sup>, demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 583-589