Catálogo de publicaciones - revistas

Compartir en
redes sociales


Nature

Resumen/Descripción – provisto por la editorial en inglés
Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 2012 / hasta dic. 2023 Nature.com
No detectada desde jul. 2006 / hasta ago. 2012 Ovid

Información

Tipo de recurso:

revistas

ISSN impreso

0028-0836

ISSN electrónico

1476-4687

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Tabla de contenidos

Measurement-based system provides quantum control of nanoparticles

Tania S. Monteiro

Palabras clave: Multidisciplinary.

Pp. 357-358

A long-term perspective on immunity to COVID

Andreas Radbruch; Hyun-Dong Chang

Palabras clave: Multidisciplinary.

Pp. 359-360

Designing the next generation of proton-exchange membrane fuel cells

Kui JiaoORCID; Jin XuanORCID; Qing DuORCID; Zhiming BaoORCID; Biao XieORCID; Bowen WangORCID; Yan ZhaoORCID; Linhao FanORCID; Huizhi WangORCID; Zhongjun HouORCID; Sen HuoORCID; Nigel P. Brandon; Yan YinORCID; Michael D. GuiverORCID

Palabras clave: Multidisciplinary.

Pp. 361-369

The 13CO-rich atmosphere of a young accreting super-Jupiter

Yapeng ZhangORCID; Ignas A. G. SnellenORCID; Alexander J. BohnORCID; Paul Mollière; Christian Ginski; H. Jens Hoeijmakers; Matthew A. KenworthyORCID; Eric E. Mamajek; Tiffany Meshkat; Maddalena ReggianiORCID; Frans Snik

Palabras clave: Multidisciplinary.

Pp. 370-372

Real-time optimal quantum control of mechanical motion at room temperature

Lorenzo MagriniORCID; Philipp RosenzweigORCID; Constanze Bach; Andreas Deutschmann-OlekORCID; Sebastian G. HoferORCID; Sungkun Hong; Nikolai Kiesel; Andreas KugiORCID; Markus AspelmeyerORCID

Palabras clave: Multidisciplinary.

Pp. 373-377

Quantum control of a nanoparticle optically levitated in cryogenic free space

Felix Tebbenjohanns; M. Luisa Mattana; Massimiliano RossiORCID; Martin Frimmer; Lukas NovotnyORCID

Palabras clave: Multidisciplinary.

Pp. 378-382

Exponential suppression of bit or phase errors with cyclic error correction

; Zijun Chen; Kevin J. Satzinger; Juan Atalaya; Alexander N. Korotkov; Andrew Dunsworth; Daniel Sank; Chris Quintana; Matt McEwenORCID; Rami Barends; Paul V. Klimov; Sabrina Hong; Cody Jones; Andre Petukhov; Dvir Kafri; Sean DemuraORCID; Brian BurkettORCID; Craig Gidney; Austin G. Fowler; Alexandru PalerORCID; Harald Putterman; Igor Aleiner; Frank Arute; Kunal Arya; Ryan Babbush; Joseph C. BardinORCID; Andreas Bengtsson; Alexandre Bourassa; Michael Broughton; Bob B. Buckley; David A. Buell; Nicholas Bushnell; Benjamin Chiaro; Roberto Collins; William Courtney; Alan R. Derk; Daniel Eppens; Catherine Erickson; Edward Farhi; Brooks Foxen; Marissa Giustina; Ami Greene; Jonathan A. Gross; Matthew P. HarriganORCID; Sean D. HarringtonORCID; Jeremy Hilton; Alan Ho; Trent Huang; William J. HugginsORCID; L. B. Ioffe; Sergei V. Isakov; Evan Jeffrey; Zhang Jiang; Kostyantyn Kechedzhi; Seon Kim; Alexei Kitaev; Fedor Kostritsa; David LandhuisORCID; Pavel Laptev; Erik Lucero; Orion Martin; Jarrod R. McCleanORCID; Trevor McCourt; Xiao Mi; Kevin C. Miao; Masoud Mohseni; Shirin Montazeri; Wojciech MruczkiewiczORCID; Josh Mutus; Ofer NaamanORCID; Matthew NeeleyORCID; Charles NeillORCID; Michael Newman; Murphy Yuezhen Niu; Thomas E. O’Brien; Alex Opremcak; Eric Ostby; Bálint Pató; Nicholas ReddORCID; Pedram Roushan; Nicholas C. Rubin; Vladimir Shvarts; Doug Strain; Marco Szalay; Matthew D. Trevithick; Benjamin Villalonga; Theodore White; Z. Jamie Yao; Ping YehORCID; Juhwan Yoo; Adam ZalcmanORCID; Hartmut Neven; Sergio BoixoORCID; Vadim Smelyanskiy; Yu Chen; Anthony MegrantORCID; Julian KellyORCID

<jats:title>Abstract</jats:title><jats:p>Realizing the potential of quantum computing requires sufficiently low logical error rates<jats:sup>1</jats:sup>. Many applications call for error rates as low as 10<jats:sup>−15</jats:sup> (refs. <jats:sup>2–9</jats:sup>), but state-of-the-art quantum platforms typically have physical error rates near 10<jats:sup>−3</jats:sup> (refs. <jats:sup>10–14</jats:sup>). Quantum error correction<jats:sup>15–17</jats:sup> promises to bridge this divide by distributing quantum logical information across many physical qubits in such a way that errors can be detected and corrected. Errors on the encoded logical qubit state can be exponentially suppressed as the number of physical qubits grows, provided that the physical error rates are below a certain threshold and stable over the course of a computation. Here we implement one-dimensional repetition codes embedded in a two-dimensional grid of superconducting qubits that demonstrate exponential suppression of bit-flip or phase-flip errors, reducing logical error per round more than 100-fold when increasing the number of qubits from 5 to 21. Crucially, this error suppression is stable over 50 rounds of error correction. We also introduce a method for analysing error correlations with high precision, allowing us to characterize error locality while performing quantum error correction. Finally, we perform error detection with a small logical qubit using the 2D surface code on the same device<jats:sup>18,19</jats:sup> and show that the results from both one- and two-dimensional codes agree with numerical simulations that use a simple depolarizing error model. These experimental demonstrations provide a foundation for building a scalable fault-tolerant quantum computer with superconducting qubits.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 383-387

Amazonia as a carbon source linked to deforestation and climate change

Luciana V. GattiORCID; Luana S. Basso; John B. Miller; Manuel Gloor; Lucas Gatti Domingues; Henrique L. G. CassolORCID; Graciela Tejada; Luiz E. O. C. Aragão; Carlos Nobre; Wouter PetersORCID; Luciano MaraniORCID; Egidio Arai; Alber H. SanchesORCID; Sergio M. CorrêaORCID; Liana AndersonORCID; Celso Von RandowORCID; Caio S. C. Correia; Stephane P. Crispim; Raiane A. L. Neves

Palabras clave: Multidisciplinary.

Pp. 388-393

A lithium-isotope perspective on the evolution of carbon and silicon cycles

Boriana Kalderon-AsaelORCID; Joachim A. R. KatchinoffORCID; Noah J. PlanavskyORCID; Ashleigh v. S. Hood; Mathieu DellingerORCID; Eric J. Bellefroid; David S. JonesORCID; Axel Hofmann; Frantz Ossa OssaORCID; Francis A. MacdonaldORCID; Chunjiang Wang; Terry T. IssonORCID; Jack G. MurphyORCID; John A. Higgins; A. Joshua WestORCID; Malcolm W. Wallace; Dan Asael; Philip A. E. Pogge von StrandmannORCID

Palabras clave: Multidisciplinary.

Pp. 394-398

Pleistocene sediment DNA reveals hominin and faunal turnovers at Denisova Cave

Elena I. ZavalaORCID; Zenobia JacobsORCID; Benjamin Vernot; Michael V. ShunkovORCID; Maxim B. KozlikinORCID; Anatoly P. Derevianko; Elena Essel; Cesare de Fillipo; Sarah Nagel; Julia Richter; Frédéric Romagné; Anna Schmidt; Bo LiORCID; Kieran O’GormanORCID; Viviane Slon; Janet KelsoORCID; Svante PääboORCID; Richard G. RobertsORCID; Matthias MeyerORCID

<jats:title>Abstract</jats:title><jats:p>Denisova Cave in southern Siberia is the type locality of the Denisovans, an archaic hominin group who were related to Neanderthals<jats:sup>1–4</jats:sup>. The dozen hominin remains recovered from the deposits also include Neanderthals<jats:sup>5,6</jats:sup> and the child of a Neanderthal and a Denisovan<jats:sup>7</jats:sup>, which suggests that Denisova Cave was a contact zone between these archaic hominins. However, uncertainties persist about the order in which these groups appeared at the site, the timing and environmental context of hominin occupation, and the association of particular hominin groups with archaeological assemblages<jats:sup>5,8–11</jats:sup>. Here we report the analysis of DNA from 728 sediment samples that were collected in a grid-like manner from layers dating to the Pleistocene epoch. We retrieved ancient faunal and hominin mitochondrial (mt)DNA from 685 and 175 samples, respectively. The earliest evidence for hominin mtDNA is of Denisovans, and is associated with early Middle Palaeolithic stone tools that were deposited approximately 250,000 to 170,000 years ago; Neanderthal mtDNA first appears towards the end of this period. We detect a turnover in the mtDNA of Denisovans that coincides with changes in the composition of faunal mtDNA, and evidence that Denisovans and Neanderthals occupied the site repeatedly—possibly until, or after, the onset of the Initial Upper Palaeolithic at least 45,000 years ago, when modern human mtDNA is first recorded in the sediments.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 399-403