Catálogo de publicaciones - revistas
Nature
Resumen/Descripción – provisto por la editorial en inglés
Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
| Institución detectada | Período | Navegá | Descargá | Solicitá |
|---|---|---|---|---|
| No detectada | desde jul. 2012 / hasta dic. 2023 | Nature.com | ||
| No detectada | desde jul. 2006 / hasta ago. 2012 | Ovid |
Información
Tipo de recurso:
revistas
ISSN impreso
0028-0836
ISSN electrónico
1476-4687
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
1869-
Tabla de contenidos
Measurement-based system provides quantum control of nanoparticles
Tania S. Monteiro
Palabras clave: Multidisciplinary.
Pp. 357-358
A long-term perspective on immunity to COVID
Andreas Radbruch; Hyun-Dong Chang
Palabras clave: Multidisciplinary.
Pp. 359-360
Designing the next generation of proton-exchange membrane fuel cells
Kui Jiao
; Jin Xuan
; Qing Du
; Zhiming Bao
; Biao Xie
; Bowen Wang
; Yan Zhao
; Linhao Fan
; Huizhi Wang
; Zhongjun Hou
; Sen Huo
; Nigel P. Brandon; Yan Yin
; Michael D. Guiver
Palabras clave: Multidisciplinary.
Pp. 361-369
The 13CO-rich atmosphere of a young accreting super-Jupiter
Yapeng Zhang
; Ignas A. G. Snellen
; Alexander J. Bohn
; Paul Mollière; Christian Ginski; H. Jens Hoeijmakers; Matthew A. Kenworthy
; Eric E. Mamajek; Tiffany Meshkat; Maddalena Reggiani
; Frans Snik
Palabras clave: Multidisciplinary.
Pp. 370-372
Real-time optimal quantum control of mechanical motion at room temperature
Lorenzo Magrini
; Philipp Rosenzweig
; Constanze Bach; Andreas Deutschmann-Olek
; Sebastian G. Hofer
; Sungkun Hong; Nikolai Kiesel; Andreas Kugi
; Markus Aspelmeyer
Palabras clave: Multidisciplinary.
Pp. 373-377
Quantum control of a nanoparticle optically levitated in cryogenic free space
Felix Tebbenjohanns; M. Luisa Mattana; Massimiliano Rossi
; Martin Frimmer; Lukas Novotny
Palabras clave: Multidisciplinary.
Pp. 378-382
Exponential suppression of bit or phase errors with cyclic error correction
; Zijun Chen; Kevin J. Satzinger; Juan Atalaya; Alexander N. Korotkov; Andrew Dunsworth; Daniel Sank; Chris Quintana; Matt McEwen
; Rami Barends; Paul V. Klimov; Sabrina Hong; Cody Jones; Andre Petukhov; Dvir Kafri; Sean Demura
; Brian Burkett
; Craig Gidney; Austin G. Fowler; Alexandru Paler
; Harald Putterman; Igor Aleiner; Frank Arute; Kunal Arya; Ryan Babbush; Joseph C. Bardin
; Andreas Bengtsson; Alexandre Bourassa; Michael Broughton; Bob B. Buckley; David A. Buell; Nicholas Bushnell; Benjamin Chiaro; Roberto Collins; William Courtney; Alan R. Derk; Daniel Eppens; Catherine Erickson; Edward Farhi; Brooks Foxen; Marissa Giustina; Ami Greene; Jonathan A. Gross; Matthew P. Harrigan
; Sean D. Harrington
; Jeremy Hilton; Alan Ho; Trent Huang; William J. Huggins
; L. B. Ioffe; Sergei V. Isakov; Evan Jeffrey; Zhang Jiang; Kostyantyn Kechedzhi; Seon Kim; Alexei Kitaev; Fedor Kostritsa; David Landhuis
; Pavel Laptev; Erik Lucero; Orion Martin; Jarrod R. McClean
; Trevor McCourt; Xiao Mi; Kevin C. Miao; Masoud Mohseni; Shirin Montazeri; Wojciech Mruczkiewicz
; Josh Mutus; Ofer Naaman
; Matthew Neeley
; Charles Neill
; Michael Newman; Murphy Yuezhen Niu; Thomas E. O’Brien; Alex Opremcak; Eric Ostby; Bálint Pató; Nicholas Redd
; Pedram Roushan; Nicholas C. Rubin; Vladimir Shvarts; Doug Strain; Marco Szalay; Matthew D. Trevithick; Benjamin Villalonga; Theodore White; Z. Jamie Yao; Ping Yeh
; Juhwan Yoo; Adam Zalcman
; Hartmut Neven; Sergio Boixo
; Vadim Smelyanskiy; Yu Chen; Anthony Megrant
; Julian Kelly
<jats:title>Abstract</jats:title><jats:p>Realizing the potential of quantum computing requires sufficiently low logical error rates<jats:sup>1</jats:sup>. Many applications call for error rates as low as 10<jats:sup>−15</jats:sup> (refs. <jats:sup>2–9</jats:sup>), but state-of-the-art quantum platforms typically have physical error rates near 10<jats:sup>−3</jats:sup> (refs. <jats:sup>10–14</jats:sup>). Quantum error correction<jats:sup>15–17</jats:sup> promises to bridge this divide by distributing quantum logical information across many physical qubits in such a way that errors can be detected and corrected. Errors on the encoded logical qubit state can be exponentially suppressed as the number of physical qubits grows, provided that the physical error rates are below a certain threshold and stable over the course of a computation. Here we implement one-dimensional repetition codes embedded in a two-dimensional grid of superconducting qubits that demonstrate exponential suppression of bit-flip or phase-flip errors, reducing logical error per round more than 100-fold when increasing the number of qubits from 5 to 21. Crucially, this error suppression is stable over 50 rounds of error correction. We also introduce a method for analysing error correlations with high precision, allowing us to characterize error locality while performing quantum error correction. Finally, we perform error detection with a small logical qubit using the 2D surface code on the same device<jats:sup>18,19</jats:sup> and show that the results from both one- and two-dimensional codes agree with numerical simulations that use a simple depolarizing error model. These experimental demonstrations provide a foundation for building a scalable fault-tolerant quantum computer with superconducting qubits.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 383-387
Amazonia as a carbon source linked to deforestation and climate change
Luciana V. Gatti
; Luana S. Basso; John B. Miller; Manuel Gloor; Lucas Gatti Domingues; Henrique L. G. Cassol
; Graciela Tejada; Luiz E. O. C. Aragão; Carlos Nobre; Wouter Peters
; Luciano Marani
; Egidio Arai; Alber H. Sanches
; Sergio M. Corrêa
; Liana Anderson
; Celso Von Randow
; Caio S. C. Correia; Stephane P. Crispim; Raiane A. L. Neves
Palabras clave: Multidisciplinary.
Pp. 388-393
A lithium-isotope perspective on the evolution of carbon and silicon cycles
Boriana Kalderon-Asael
; Joachim A. R. Katchinoff
; Noah J. Planavsky
; Ashleigh v. S. Hood; Mathieu Dellinger
; Eric J. Bellefroid; David S. Jones
; Axel Hofmann; Frantz Ossa Ossa
; Francis A. Macdonald
; Chunjiang Wang; Terry T. Isson
; Jack G. Murphy
; John A. Higgins; A. Joshua West
; Malcolm W. Wallace; Dan Asael; Philip A. E. Pogge von Strandmann
Palabras clave: Multidisciplinary.
Pp. 394-398
Pleistocene sediment DNA reveals hominin and faunal turnovers at Denisova Cave
Elena I. Zavala
; Zenobia Jacobs
; Benjamin Vernot; Michael V. Shunkov
; Maxim B. Kozlikin
; Anatoly P. Derevianko; Elena Essel; Cesare de Fillipo; Sarah Nagel; Julia Richter; Frédéric Romagné; Anna Schmidt; Bo Li
; Kieran O’Gorman
; Viviane Slon; Janet Kelso
; Svante Pääbo
; Richard G. Roberts
; Matthias Meyer
<jats:title>Abstract</jats:title><jats:p>Denisova Cave in southern Siberia is the type locality of the Denisovans, an archaic hominin group who were related to Neanderthals<jats:sup>1–4</jats:sup>. The dozen hominin remains recovered from the deposits also include Neanderthals<jats:sup>5,6</jats:sup> and the child of a Neanderthal and a Denisovan<jats:sup>7</jats:sup>, which suggests that Denisova Cave was a contact zone between these archaic hominins. However, uncertainties persist about the order in which these groups appeared at the site, the timing and environmental context of hominin occupation, and the association of particular hominin groups with archaeological assemblages<jats:sup>5,8–11</jats:sup>. Here we report the analysis of DNA from 728 sediment samples that were collected in a grid-like manner from layers dating to the Pleistocene epoch. We retrieved ancient faunal and hominin mitochondrial (mt)DNA from 685 and 175 samples, respectively. The earliest evidence for hominin mtDNA is of Denisovans, and is associated with early Middle Palaeolithic stone tools that were deposited approximately 250,000 to 170,000 years ago; Neanderthal mtDNA first appears towards the end of this period. We detect a turnover in the mtDNA of Denisovans that coincides with changes in the composition of faunal mtDNA, and evidence that Denisovans and Neanderthals occupied the site repeatedly—possibly until, or after, the onset of the Initial Upper Palaeolithic at least 45,000 years ago, when modern human mtDNA is first recorded in the sediments.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 399-403