Catálogo de publicaciones - revistas

Compartir en
redes sociales


Nature

Resumen/Descripción – provisto por la editorial en inglés
Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 2012 / hasta dic. 2023 Nature.com
No detectada desde jul. 2006 / hasta ago. 2012 Ovid

Información

Tipo de recurso:

revistas

ISSN impreso

0028-0836

ISSN electrónico

1476-4687

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Tabla de contenidos

Metabolic diversity drives cancer cell invasion

Sanjeethan C. Baksh; Lydia W. S. Finley

Palabras clave: Multidisciplinary.

Pp. 627-628

Evolution of Earth’s tectonic carbon conveyor belt

R. Dietmar MüllerORCID; Ben MatherORCID; Adriana Dutkiewicz; Tobias KellerORCID; Andrew MerdithORCID; Christopher M. Gonzalez; Weronika GorczykORCID; Sabin ZahirovicORCID

Palabras clave: Multidisciplinary.

Pp. 629-639

Defining the risk of SARS-CoV-2 variants on immune protection

Marciela M. DeGrace; Elodie GhedinORCID; Matthew B. FriemanORCID; Florian KrammerORCID; Alba GrifoniORCID; Arghavan Alisoltani; Galit AlterORCID; Rama R. AmaraORCID; Ralph S. BaricORCID; Dan H. BarouchORCID; Jesse D. BloomORCID; Louis-Marie BloyetORCID; Gaston Bonenfant; Adrianus C. M. BoonORCID; Eli A. Boritz; Debbie L. BrattORCID; Traci L. Bricker; Liliana Brown; William J. BuchserORCID; Juan Manuel Carreño; Liel Cohen-LaviORCID; Tamarand L. Darling; Meredith E. Davis-Gardner; Bethany L. DearloveORCID; Han Di; Meike Dittmann; Nicole A. Doria-Rose; Daniel C. Douek; Christian DrostenORCID; Venkata-Viswanadh EdaraORCID; Ali EllebedyORCID; Thomas P. FabrizioORCID; Guido Ferrari; Will M. Fischer; William C. Florence; Ron A. M. FouchierORCID; John Franks; Adolfo García-SastreORCID; Adam GodzikORCID; Ana Silvia Gonzalez-ReicheORCID; Aubree GordonORCID; Bart L. HaagmansORCID; Peter J. Halfmann; David D. HoORCID; Michael R. HolbrookORCID; Yaoxing HuangORCID; Sarah L. JamesORCID; Lukasz Jaroszewski; Trushar Jeevan; Robert M. JohnsonORCID; Terry C. JonesORCID; Astha JoshiORCID; Yoshihiro KawaokaORCID; Lisa KercherORCID; Marion P. G. KoopmansORCID; Bette KorberORCID; Eilay Koren; Richard A. Koup; Eric B. LeGresleyORCID; Jacob E. Lemieux; Mariel J. LiebeskindORCID; Zhuoming LiuORCID; Brandi Livingston; James P. LogueORCID; Yang LuoORCID; Adrian B. McDermottORCID; Margaret J. McElrath; Victoria A. MeliopoulosORCID; Vineet D. MenacheryORCID; David C. Montefiori; Barbara Mühlemann; Vincent J. MunsterORCID; Jenny E. Munt; Manoj S. NairORCID; Antonia NetzlORCID; Anna M. Niewiadomska; Sijy O’Dell; Andrew PekoszORCID; Stanley PerlmanORCID; Marjorie C. Pontelli; Barry RockxORCID; Morgane RollandORCID; Paul W. RothlaufORCID; Sinai Sacharen; Richard H. ScheuermannORCID; Stephen D. Schmidt; Michael SchotsaertORCID; Stacey Schultz-CherryORCID; Robert A. SederORCID; Mayya Sedova; Alessandro Sette; Reed S. ShabmanORCID; Xiaoying Shen; Pei-Yong ShiORCID; Maulik Shukla; Viviana SimonORCID; Spencer Stumpf; Nancy J. Sullivan; Larissa B. ThackrayORCID; James Theiler; Paul G. ThomasORCID; Sanja TrifkovicORCID; Sina TüreliORCID; Samuel A. Turner; Maria A. Vakaki; Harm van BakelORCID; Laura A. VanBlarganORCID; Leah R. VincentORCID; Zachary S. WallaceORCID; Li Wang; Maple Wang; Pengfei WangORCID; Wei Wang; Scott C. WeaverORCID; Richard J. WebbyORCID; Carol D. WeissORCID; David E. WentworthORCID; Stuart M. WestonORCID; Sean P. J. WhelanORCID; Bradley M. WhitenerORCID; Samuel H. Wilks; Xuping XieORCID; Baoling Ying; Hyejin YoonORCID; Bin Zhou; Tomer HertzORCID; Derek J. SmithORCID; Michael S. DiamondORCID; Diane J. PostORCID; Mehul S. SutharORCID

Palabras clave: Multidisciplinary.

Pp. 640-652

In situ recording of Mars soundscape

S. MauriceORCID; B. ChideORCID; N. MurdochORCID; R. D. Lorenz; D. MimounORCID; R. C. WiensORCID; A. Stott; X. JacobORCID; T. BertrandORCID; F. MontmessinORCID; N. L. LanzaORCID; C. Alvarez-LlamasORCID; S. M. Angel; M. Aung; J. Balaram; O. Beyssac; A. Cousin; G. Delory; O. ForniORCID; T. FouchetORCID; O. GasnaultORCID; H. Grip; M. HechtORCID; J. Hoffman; J. Laserna; J. LasueORCID; J. Maki; J. McClean; P.-Y. MeslinORCID; S. Le MouélicORCID; A. MunguiraORCID; C. E. NewmanORCID; J. A. Rodríguez ManfrediORCID; J. Moros; A. Ollila; P. Pilleri; S. SchröderORCID; M. de la Torre JuárezORCID; T. Tzanetos; K. M. Stack; K. Farley; K. WillifordORCID; R. C. Wiens; T. Acosta-Maeda; R. B. Anderson; D. M. Applin; G. Arana; M. Bassas-Portus; R. Beal; P. Beck; K. Benzerara; S. Bernard; P. Bernardi; T. Bosak; B. Bousquet; A. Brown; A. Cadu; P. Caïs; K. Castro; E. Clavé; S. M. Clegg; E. Cloutis; S. Connell; A. Debus; E. Dehouck; D. Delapp; C. Donny; A. Dorresoundiram; G. Dromart; B. Dubois; C. Fabre; A. Fau; W. Fischer; R. Francis; J. Frydenvang; T. Gabriel; E. Gibbons; I. Gontijo; J. R. Johnson; H. Kalucha; E. Kelly; E. W. Knutsen; G. Lacombe; S. Le Mouélic; C. Legett; R. Leveille; E. Lewin; G. Lopez-Reyes; E. Lorigny; J. M. Madariaga; M. Madsen; S. Madsen; L. Mandon; N. Mangold; M. Mann; J.-A. Manrique; J. Martinez-Frias; L. E. Mayhew; T. McConnochie; S. M. McLennan; N. Melikechi; F. Meunier; G. Montagnac; V. Mousset; T. Nelson; R. T. Newell; Y. Parot; C. Pilorget; P. Pinet; G. Pont; F. Poulet; C. Quantin-Nataf; B. Quertier; W. Rapin; A. Reyes-Newell; S. Robinson; L. Rochas; C. Royer; F. Rull; V. Sautter; S. Sharma; V. Shridar; A. Sournac; M. Toplis; I. Torre-Fdez; N. Turenne; A. Udry; M. Veneranda; D. Venhaus; D. Vogt; P. Willis;

<jats:title>Abstract</jats:title><jats:p>Before the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat<jats:sup>1</jats:sup>, (2) the speed of sound varies at the surface with frequency<jats:sup>2,3</jats:sup> and (3) high-frequency waves are strongly attenuated with distance in CO<jats:sub>2</jats:sub> (refs. <jats:sup>2–4</jats:sup>). However, theoretical models were uncertain because of a lack of experimental data at low pressure and the difficulty to characterize turbulence or attenuation in a closed environment. Here, using Perseverance microphone recordings, we present the first characterization of the acoustic environment on Mars and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, showing a dissipative regime extending over five orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are about 10 m s<jats:sup>−1</jats:sup> apart below and above 240 Hz, a unique characteristic of low-pressure CO<jats:sub>2</jats:sub>-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to explain the large contribution of the CO<jats:sub>2</jats:sub> vibrational relaxation in the audible range. These results establish a ground truth for the modelling of acoustic processes, which is critical for studies in atmospheres such as those of Mars and Venus. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 653-658

Free-electron lasing with compact beam-driven plasma wakefield accelerator

R. PompiliORCID; D. Alesini; M. P. AnaniaORCID; S. ArjmandORCID; M. BehtoueiORCID; M. BellavegliaORCID; A. Biagioni; B. Buonomo; F. CardelliORCID; M. Carpanese; E. Chiadroni; A. Cianchi; G. CostaORCID; A. Del DottoORCID; M. Del Giorno; F. DipaceORCID; A. Doria; F. FilippiORCID; M. Galletti; L. Giannessi; A. GiribonoORCID; P. IovineORCID; V. Lollo; A. Mostacci; F. Nguyen; M. Opromolla; E. Di PalmaORCID; L. Pellegrino; A. Petralia; V. Petrillo; L. PiersantiORCID; G. Di Pirro; S. Romeo; A. R. Rossi; J. Scifo; A. Selce; V. Shpakov; A. StellaORCID; C. Vaccarezza; F. VillaORCID; A. Zigler; M. Ferrario

Palabras clave: Multidisciplinary.

Pp. 659-662

Qubit teleportation between non-neighbouring nodes in a quantum network

S. L. N. HermansORCID; M. PompiliORCID; H. K. C. BeukersORCID; S. BaierORCID; J. Borregaard; R. HansonORCID

<jats:title>Abstract</jats:title><jats:p>Future quantum internet applications will derive their power from the ability to share quantum information across the network<jats:sup>1,2</jats:sup>. Quantum teleportation allows for the reliable transfer of quantum information between distant nodes, even in the presence of highly lossy network connections<jats:sup>3</jats:sup>. Although many experimental demonstrations have been performed on different quantum network platforms<jats:sup>4–10</jats:sup>, moving beyond directly connected nodes has, so far, been hindered by the demanding requirements on the pre-shared remote entanglement, joint qubit readout and coherence times. Here we realize quantum teleportation between remote, non-neighbouring nodes in a quantum network. The network uses three optically connected nodes based on solid-state spin qubits. The teleporter is prepared by establishing remote entanglement on the two links, followed by entanglement swapping on the middle node and storage in a memory qubit. We demonstrate that, once successful preparation of the teleporter is heralded, arbitrary qubit states can be teleported with fidelity above the classical bound, even with unit efficiency. These results are enabled by key innovations in the qubit readout procedure, active memory qubit protection during entanglement generation and tailored heralding that reduces remote entanglement infidelities. Our work demonstrates a prime building block for future quantum networks and opens the door to exploring teleportation-based multi-node protocols and applications<jats:sup>2,11–13</jats:sup>.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 663-668

Realizing repeated quantum error correction in a distance-three surface code

Sebastian KrinnerORCID; Nathan LacroixORCID; Ants RemmORCID; Agustin Di PaoloORCID; Elie GenoisORCID; Catherine Leroux; Christoph HellingsORCID; Stefania Lazar; Francois Swiadek; Johannes Herrmann; Graham J. Norris; Christian Kraglund AndersenORCID; Markus MüllerORCID; Alexandre BlaisORCID; Christopher EichlerORCID; Andreas WallraffORCID

Palabras clave: Multidisciplinary.

Pp. 669-674

Demonstration of fault-tolerant universal quantum gate operations

Lukas Postler; Sascha Heuβen; Ivan Pogorelov; Manuel Rispler; Thomas Feldker; Michael Meth; Christian D. MarciniakORCID; Roman StrickerORCID; Martin Ringbauer; Rainer Blatt; Philipp SchindlerORCID; Markus MüllerORCID; Thomas MonzORCID

Palabras clave: Multidisciplinary.

Pp. 675-680

Cilia metasurfaces for electronically programmable microfluidic manipulation

Wei WangORCID; Qingkun LiuORCID; Ivan TanasijevicORCID; Michael F. Reynolds; Alejandro J. Cortese; Marc Z. MiskinORCID; Michael C. Cao; David A. MullerORCID; Alyosha C. Molnar; Eric Lauga; Paul L. McEuenORCID; Itai CohenORCID

Palabras clave: Multidisciplinary.

Pp. 681-686

Cobalt-electrocatalytic HAT for functionalization of unsaturated C–C bonds

Samer Gnaim; Adriano Bauer; Hai-Jun Zhang; Longrui Chen; Cara Gannett; Christian A. Malapit; David E. Hill; David Vogt; Tianhua Tang; Ryan A. Daley; Wei HaoORCID; Rui Zeng; Mathilde Quertenmont; Wesley D. BeckORCID; Elya Kandahari; Julien C. VantouroutORCID; Pierre-Georges EcheverriaORCID; Hector D. AbrunaORCID; Donna G. Blackmond; Shelley D. Minteer; Sarah E. ReismanORCID; Matthew S. SigmanORCID; Phil S. BaranORCID

Palabras clave: Multidisciplinary.

Pp. 687-695