Catálogo de publicaciones - libros
Logos of Phenomenology and Phenomenology of the Logos. Book Three: Logos of History: Logos of Life. Historicity, Time, Nature, Communication, Consciousness, Alterity, Culture
Anna-Teresa Tymieniecka (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Phenomenology; Modern Philosophy; Philosophy of Man; Philosophy of Nature
Disponibilidad
| Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
|---|---|---|---|---|
| No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-4020-3717-7
ISBN electrónico
978-1-4020-3718-4
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer 2006
Cobertura temática
Tabla de contenidos
Language, Time and Otherness
Julia Ponzio
Proteomics, the systematic identification of proteins, has become an important asset for the study of cellular processes in a systems biology context. During the last few years significant technological improvements have been reported for high-throughput proteomics, both at the level of data analysis software and mass spectrometry hardware. With the maturation of proteomics technology, scientists now aim at proteome-wide protein identification to complement data from genome-wide transcriptional profiling and metabolomics experiments. A complete map of the proteome is expected to provide important information on genome activities and gene structures. Peptides identified in proteomics experiments are extremely valuable because they manifest the expression of a gene and thus complement the annotation of open reading frames and confirm or correct gene structure prediction. Furthermore, knowledge of repeatedly identified peptides in large-scale proteomics experiments allows peptide arrays with a selected set of proteotypic peptides for absolute protein quantification to be designed. Last but not least, knowledge of protein abundance, posttranslational modification and localisation is the key to a better understanding of the molecular mechanisms of cell functioning and pathway compartmentalisation. In this chapter, we will briefly highlight the current status of Arabidopsis proteomics and discuss existing limitations and anticipated new developments in plant proteomics.
Section IV - Time-Space and the Worlds, External and Internal | Pp. 353-372
Virtual Decadence
Martin Holt
Proteomics, the systematic identification of proteins, has become an important asset for the study of cellular processes in a systems biology context. During the last few years significant technological improvements have been reported for high-throughput proteomics, both at the level of data analysis software and mass spectrometry hardware. With the maturation of proteomics technology, scientists now aim at proteome-wide protein identification to complement data from genome-wide transcriptional profiling and metabolomics experiments. A complete map of the proteome is expected to provide important information on genome activities and gene structures. Peptides identified in proteomics experiments are extremely valuable because they manifest the expression of a gene and thus complement the annotation of open reading frames and confirm or correct gene structure prediction. Furthermore, knowledge of repeatedly identified peptides in large-scale proteomics experiments allows peptide arrays with a selected set of proteotypic peptides for absolute protein quantification to be designed. Last but not least, knowledge of protein abundance, posttranslational modification and localisation is the key to a better understanding of the molecular mechanisms of cell functioning and pathway compartmentalisation. In this chapter, we will briefly highlight the current status of Arabidopsis proteomics and discuss existing limitations and anticipated new developments in plant proteomics.
Section IV - Time-Space and the Worlds, External and Internal | Pp. 373-399
Some Considerations Concerning the Question of in the Phenomenology of Life
Carmen Cozma
Proteomics, the systematic identification of proteins, has become an important asset for the study of cellular processes in a systems biology context. During the last few years significant technological improvements have been reported for high-throughput proteomics, both at the level of data analysis software and mass spectrometry hardware. With the maturation of proteomics technology, scientists now aim at proteome-wide protein identification to complement data from genome-wide transcriptional profiling and metabolomics experiments. A complete map of the proteome is expected to provide important information on genome activities and gene structures. Peptides identified in proteomics experiments are extremely valuable because they manifest the expression of a gene and thus complement the annotation of open reading frames and confirm or correct gene structure prediction. Furthermore, knowledge of repeatedly identified peptides in large-scale proteomics experiments allows peptide arrays with a selected set of proteotypic peptides for absolute protein quantification to be designed. Last but not least, knowledge of protein abundance, posttranslational modification and localisation is the key to a better understanding of the molecular mechanisms of cell functioning and pathway compartmentalisation. In this chapter, we will briefly highlight the current status of Arabidopsis proteomics and discuss existing limitations and anticipated new developments in plant proteomics.
Section V - World of Life, Communication and Culture | Pp. 403-409
The Interfacing of Language and World
Erkut Sezgiİn
Proteomics, the systematic identification of proteins, has become an important asset for the study of cellular processes in a systems biology context. During the last few years significant technological improvements have been reported for high-throughput proteomics, both at the level of data analysis software and mass spectrometry hardware. With the maturation of proteomics technology, scientists now aim at proteome-wide protein identification to complement data from genome-wide transcriptional profiling and metabolomics experiments. A complete map of the proteome is expected to provide important information on genome activities and gene structures. Peptides identified in proteomics experiments are extremely valuable because they manifest the expression of a gene and thus complement the annotation of open reading frames and confirm or correct gene structure prediction. Furthermore, knowledge of repeatedly identified peptides in large-scale proteomics experiments allows peptide arrays with a selected set of proteotypic peptides for absolute protein quantification to be designed. Last but not least, knowledge of protein abundance, posttranslational modification and localisation is the key to a better understanding of the molecular mechanisms of cell functioning and pathway compartmentalisation. In this chapter, we will briefly highlight the current status of Arabidopsis proteomics and discuss existing limitations and anticipated new developments in plant proteomics.
Section V - World of Life, Communication and Culture | Pp. 411-429
De L’idée de la Forme Phénoménologique
Jozef Sivák
Proteomics, the systematic identification of proteins, has become an important asset for the study of cellular processes in a systems biology context. During the last few years significant technological improvements have been reported for high-throughput proteomics, both at the level of data analysis software and mass spectrometry hardware. With the maturation of proteomics technology, scientists now aim at proteome-wide protein identification to complement data from genome-wide transcriptional profiling and metabolomics experiments. A complete map of the proteome is expected to provide important information on genome activities and gene structures. Peptides identified in proteomics experiments are extremely valuable because they manifest the expression of a gene and thus complement the annotation of open reading frames and confirm or correct gene structure prediction. Furthermore, knowledge of repeatedly identified peptides in large-scale proteomics experiments allows peptide arrays with a selected set of proteotypic peptides for absolute protein quantification to be designed. Last but not least, knowledge of protein abundance, posttranslational modification and localisation is the key to a better understanding of the molecular mechanisms of cell functioning and pathway compartmentalisation. In this chapter, we will briefly highlight the current status of Arabidopsis proteomics and discuss existing limitations and anticipated new developments in plant proteomics.
Section V - World of Life, Communication and Culture | Pp. 431-438
Husserl and the Crisis of Philosophy
John Murungi
Proteomics, the systematic identification of proteins, has become an important asset for the study of cellular processes in a systems biology context. During the last few years significant technological improvements have been reported for high-throughput proteomics, both at the level of data analysis software and mass spectrometry hardware. With the maturation of proteomics technology, scientists now aim at proteome-wide protein identification to complement data from genome-wide transcriptional profiling and metabolomics experiments. A complete map of the proteome is expected to provide important information on genome activities and gene structures. Peptides identified in proteomics experiments are extremely valuable because they manifest the expression of a gene and thus complement the annotation of open reading frames and confirm or correct gene structure prediction. Furthermore, knowledge of repeatedly identified peptides in large-scale proteomics experiments allows peptide arrays with a selected set of proteotypic peptides for absolute protein quantification to be designed. Last but not least, knowledge of protein abundance, posttranslational modification and localisation is the key to a better understanding of the molecular mechanisms of cell functioning and pathway compartmentalisation. In this chapter, we will briefly highlight the current status of Arabidopsis proteomics and discuss existing limitations and anticipated new developments in plant proteomics.
Section V - World of Life, Communication and Culture | Pp. 439-450
Phenomenological Hermeneutics of Intermediacy and the Constitution of Intercultural Sense
Dean Komel
Proteomics, the systematic identification of proteins, has become an important asset for the study of cellular processes in a systems biology context. During the last few years significant technological improvements have been reported for high-throughput proteomics, both at the level of data analysis software and mass spectrometry hardware. With the maturation of proteomics technology, scientists now aim at proteome-wide protein identification to complement data from genome-wide transcriptional profiling and metabolomics experiments. A complete map of the proteome is expected to provide important information on genome activities and gene structures. Peptides identified in proteomics experiments are extremely valuable because they manifest the expression of a gene and thus complement the annotation of open reading frames and confirm or correct gene structure prediction. Furthermore, knowledge of repeatedly identified peptides in large-scale proteomics experiments allows peptide arrays with a selected set of proteotypic peptides for absolute protein quantification to be designed. Last but not least, knowledge of protein abundance, posttranslational modification and localisation is the key to a better understanding of the molecular mechanisms of cell functioning and pathway compartmentalisation. In this chapter, we will briefly highlight the current status of Arabidopsis proteomics and discuss existing limitations and anticipated new developments in plant proteomics.
Section V - World of Life, Communication and Culture | Pp. 451-464
Arendt’s Revision of : On Plurality and Narrative Experience
William D. Melaney
Proteomics, the systematic identification of proteins, has become an important asset for the study of cellular processes in a systems biology context. During the last few years significant technological improvements have been reported for high-throughput proteomics, both at the level of data analysis software and mass spectrometry hardware. With the maturation of proteomics technology, scientists now aim at proteome-wide protein identification to complement data from genome-wide transcriptional profiling and metabolomics experiments. A complete map of the proteome is expected to provide important information on genome activities and gene structures. Peptides identified in proteomics experiments are extremely valuable because they manifest the expression of a gene and thus complement the annotation of open reading frames and confirm or correct gene structure prediction. Furthermore, knowledge of repeatedly identified peptides in large-scale proteomics experiments allows peptide arrays with a selected set of proteotypic peptides for absolute protein quantification to be designed. Last but not least, knowledge of protein abundance, posttranslational modification and localisation is the key to a better understanding of the molecular mechanisms of cell functioning and pathway compartmentalisation. In this chapter, we will briefly highlight the current status of Arabidopsis proteomics and discuss existing limitations and anticipated new developments in plant proteomics.
Section V - World of Life, Communication and Culture | Pp. 465-479
Phenomenology in Mongolia
Danzankhorloo Dashpurev
Proteomics, the systematic identification of proteins, has become an important asset for the study of cellular processes in a systems biology context. During the last few years significant technological improvements have been reported for high-throughput proteomics, both at the level of data analysis software and mass spectrometry hardware. With the maturation of proteomics technology, scientists now aim at proteome-wide protein identification to complement data from genome-wide transcriptional profiling and metabolomics experiments. A complete map of the proteome is expected to provide important information on genome activities and gene structures. Peptides identified in proteomics experiments are extremely valuable because they manifest the expression of a gene and thus complement the annotation of open reading frames and confirm or correct gene structure prediction. Furthermore, knowledge of repeatedly identified peptides in large-scale proteomics experiments allows peptide arrays with a selected set of proteotypic peptides for absolute protein quantification to be designed. Last but not least, knowledge of protein abundance, posttranslational modification and localisation is the key to a better understanding of the molecular mechanisms of cell functioning and pathway compartmentalisation. In this chapter, we will briefly highlight the current status of Arabidopsis proteomics and discuss existing limitations and anticipated new developments in plant proteomics.
Section V - World of Life, Communication and Culture | Pp. 481-482
Phenomenology of Lifelong Learning
Kiymet Selvi
Proteomics, the systematic identification of proteins, has become an important asset for the study of cellular processes in a systems biology context. During the last few years significant technological improvements have been reported for high-throughput proteomics, both at the level of data analysis software and mass spectrometry hardware. With the maturation of proteomics technology, scientists now aim at proteome-wide protein identification to complement data from genome-wide transcriptional profiling and metabolomics experiments. A complete map of the proteome is expected to provide important information on genome activities and gene structures. Peptides identified in proteomics experiments are extremely valuable because they manifest the expression of a gene and thus complement the annotation of open reading frames and confirm or correct gene structure prediction. Furthermore, knowledge of repeatedly identified peptides in large-scale proteomics experiments allows peptide arrays with a selected set of proteotypic peptides for absolute protein quantification to be designed. Last but not least, knowledge of protein abundance, posttranslational modification and localisation is the key to a better understanding of the molecular mechanisms of cell functioning and pathway compartmentalisation. In this chapter, we will briefly highlight the current status of Arabidopsis proteomics and discuss existing limitations and anticipated new developments in plant proteomics.
Section V - World of Life, Communication and Culture | Pp. 483-500