Catálogo de publicaciones - revistas
Chinese Physics C
Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2008 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
1674-1137
Editor responsable
Chinese Physical Society (CPS)
País de edición
China
Fecha de publicación
2008-
Cobertura temática
Tabla de contenidos
Studying the potential of QQq at finite temperature in a holographic model *
Xun Chen; Bo Yu; Peng-Cheng Chu; Xiao-hua Li
<jats:title>Abstract</jats:title> <jats:p>Using gauge/gravity duality, we investigate the string breaking and dissolution of two heavy quarks coupled to a light quark at finite temperature. It is found that three configurations of <jats:italic>QQq</jats:italic>exist with the increase in separation distance for heavy quarks in the confined phase. Furthermore, string breaking occurs at the distance <jats:inline-formula> <jats:tex-math><?CDATA $ L_{QQq} = 1.27\; {\rm{fm}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073102_M1.jpg" xlink:type="simple" /> </jats:inline-formula> ( <jats:inline-formula> <jats:tex-math><?CDATA $ T = 0.1\; {\rm{GeV}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073102_M2.jpg" xlink:type="simple" /> </jats:inline-formula>) for the decay mode <jats:inline-formula> <jats:tex-math><?CDATA $ {Q Q q} \rightarrow {Q q q+Q \bar{q}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073102_M3.jpg" xlink:type="simple" /> </jats:inline-formula>. In the deconfined phase, <jats:italic>QQq</jats:italic> melts at a certain distance and then becomes free quarks. Finally, we compare the potential of <jats:italic>QQq</jats:italic> with that of <jats:inline-formula> <jats:tex-math><?CDATA $ {Q\bar{Q}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073102_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, and it is found that <jats:inline-formula> <jats:tex-math><?CDATA $ {Q\bar{Q}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073102_M5.jpg" xlink:type="simple" /> </jats:inline-formula> is more stable than <jats:italic>QQq</jats:italic>at high temperatures. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 073102
Entropy per Rapidity in Pb-Pb Central Collisions using Thermal and Artificial Neural Network (ANN) Models at LHC Energies
D. M. Habashy; Mahmoud Y. El-Bakry; Werner Scheinast; Mahmoud Hanafy
<jats:title>Abstract</jats:title> <jats:p>The entropy per rapidity <jats:inline-formula> <jats:tex-math><?CDATA ${\rm d} S/{\rm d} y$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073103_M1.jpg" xlink:type="simple" /> </jats:inline-formula> produced in central Pb-Pb ultra-relativistic nuclear collisions at LHC energies is calculated using experimentally identified particle spectra and source radii estimated from Hanbury Brown-Twiss (HBT) correlations for particles <jats:italic>π</jats:italic>, <jats:italic>k</jats:italic>, <jats:italic>p</jats:italic>, Λ, Ω, and <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{\Sigma} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073103_M2.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:italic>π</jats:italic>, <jats:italic>k</jats:italic>, <jats:italic>p</jats:italic>, Λ, and <jats:inline-formula> <jats:tex-math><?CDATA $ K_s^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073103_M3.jpg" xlink:type="simple" /> </jats:inline-formula> at <jats:inline-formula> <jats:tex-math><?CDATA $ \sqrt{s} =2.76 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073103_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ 5.02 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073103_M5.jpg" xlink:type="simple" /> </jats:inline-formula> TeV, respectively. An artificial neural network (ANN) simulation model is used to estimate the entropy per rapidity <jats:inline-formula> <jats:tex-math><?CDATA $ {\rm d} S/{\rm d} y $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073103_M6.jpg" xlink:type="simple" /> </jats:inline-formula> at the considered energies. The simulation results are compared with equivalent experimental data, and a good agreement is achieved. A mathematical equation describing the experimental data is obtained. Extrapolation of the transverse momentum spectra at <jats:inline-formula> <jats:tex-math><?CDATA $ p_{\rm T} =0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073103_M7.jpg" xlink:type="simple" /> </jats:inline-formula> is required to calculate <jats:inline-formula> <jats:tex-math><?CDATA $ {\rm d} S/{\rm d} y $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073103_M8.jpg" xlink:type="simple" /> </jats:inline-formula>; thus, we use two different fitting functions, the Tsallis distribution and hadron resonance gas (HRG) model. The success of the ANN model in describing the experimental measurements leads to the prediction of several spectra values for the mentioned particles, which may lead to further predictions in the absence of experiments. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 073103
Electromagnetic form factors of neutron and neutral hyperons in the oscillating point of view *
An-Xin Dai; Zhong-Yi Li; Lei Chang; Ju-Jun Xie
<jats:title>Abstract</jats:title> <jats:p>Based on the recent precise measurements by the BESIII collaboration for electron–positron annihilation into a neutron and antineutron pair, the effective form factors of the neutron were determined in the time-like region, and it was found that the effective form factors of the neutron are smaller than those of the proton. The effective form factors of the neutron show a periodic behaviour, similar to those of the proton. Here, a comparative analysis for Λ, <jats:inline-formula> <jats:tex-math><?CDATA $ \Sigma^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073104_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073104_M2.jpg" xlink:type="simple" /> </jats:inline-formula> hyperons is performed. Fits of the available data on the effective form factors of Λ, <jats:inline-formula> <jats:tex-math><?CDATA $ \Sigma^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073104_M3.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073104_M4.jpg" xlink:type="simple" /> </jats:inline-formula> with zero charge show an interesting phenomenon in the oscillating behavior of their effective form factors. However, this will need to be confirmed by future precise experiments. Both theoretical and experimental investigations of this phenomenon can shed light on the reaction mechanisms of the electron–positron annihilation processes. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 073104
Searching systematics for nonfactorizable contributions to and hadronic decays
Maninder Kaur; Supreet Pal Singh; R. C. Verma
<jats:title>Abstract</jats:title> <jats:p>The two-body weak decays <jats:inline-formula> <jats:tex-math><?CDATA $ \bar B \to \pi D $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073105_M3.jpg" xlink:type="simple" /> </jats:inline-formula>/ <jats:inline-formula> <jats:tex-math><?CDATA $ \bar B \to \rho D $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073105_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \bar B \to \pi {D^*} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073105_M5.jpg" xlink:type="simple" /> </jats:inline-formula> are examined using isospin analysis to study nonfactorizable contributions. After determining strong interaction phases and obtaining factorizable contributions from spectator-quark diagrams for <jats:italic>N</jats:italic> <jats:sub> <jats:italic>c</jats:italic> </jats:sub>=3, we determine nonfactorizable isospin amplitudes from the experimental data for these modes. Our results support the universality of the ratio of nonfactorizable isospin reduced amplitudes for these decays within experimental errors. To demonstrate that these systematics are not coincidental, we also plot our results w. r. t. this ratio. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 073105
Radiative decays of charmed mesons in a modified relativistic quark model *
Jie-Lin Li; Dian-Yong Chen
<jats:title>Abstract</jats:title> <jats:p>In this study, we perform systematic estimations of the radiative decays of the charmed mesons in a modified relativistic quark model. Our estimations indicate that the branching ratios of the processes of <jats:inline-formula> <jats:tex-math><?CDATA $ D_2^0(1^3P_2) \to D^{\ast 0}(1^3S_1) \gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073106_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ D_3^0(1D_3) \to D_2^0(1^3P_2) \gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073106_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ D_2^0(2D_2^\prime) \to D_1^{0}(2P_1) \gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073106_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ D_3^0(2^3D_3) \to D_2^0(2^3P_2) \gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073106_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $ D^{\ast 0}(1^3S_1) \to $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073106_M5.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ D^0(1^1S_0) \gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073106_M5-1.jpg" xlink:type="simple" /> </jats:inline-formula> are of the order of <jats:inline-formula> <jats:tex-math><?CDATA $ 10^{-2} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073106_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, which are sizable to be detected experimentally. Moreover, the branching ratios of some channels, for example, <jats:inline-formula> <jats:tex-math><?CDATA $ D_1^0(1P_1) \to D(1^1S_0)^0 \gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073106_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ D^0(3^1S_0) \to D_1^{\prime 0}(2P^\prime_{1}) \gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073106_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $ D^0(3^3S_1) \to D_2^0(2^3P_2) \gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073106_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, are estimated to be of the order of <jats:inline-formula> <jats:tex-math><?CDATA $ 10^{-3} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073106_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, which may be accessible with the accumulation of data in future experiments. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 073106
Role of neutrino form factors in the energy loss rates of the pair annihilation process
C. Aydın
<jats:title>Abstract</jats:title> <jats:p>The stellar energy loss rates due to the production of neutrino pairs <jats:inline-formula> <jats:tex-math><?CDATA $ e^+e^- \rightarrow (W, Z, \gamma) \rightarrow \nu_e \overline{\nu_e} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_073107_M1.jpg" xlink:type="simple" /> </jats:inline-formula> are calculated using the minimal extension of the Standard Model with the electromagnetic properties of the Dirac neutrinos, which takes the contributions of the neutrino charge radius, anapole moment, and dipole moments into account. We show that the contribution of the electron neutrino's dipole moment is small compared with that of the charge radius. The obtained results are also compared with the results obtained using the Standard Model. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 073107
Number of J/ψ events at BESIII *
M. Ablikim; M. N. Achasov; P. Adlarson; S. Ahmed; M. Albrecht; R. Aliberti; A. Amoroso; M. R. An; Q. An; X. H. Bai; Y. Bai; O. Bakina; R. Baldini Ferroli; I. Balossino; Y. Ban; K. Begzsuren; N. Berger; M. Bertani; D. Bettoni; F. Bianchi; J. Bloms; A. Bortone; I. Boyko; R. A. Briere; H. Cai; X. Cai; A. Calcaterra; G. F. Cao; N. Cao; S. A. Cetin; J. F. Chang; W. L. Chang; G. Chelkov; G. Chen; H. S. Chen; M. L. Chen; S. J. Chen; X. R. Chen; Y. B. Chen; Z. J. Chen; W. S. Cheng; G. Cibinetto; F. Cossio; J. J. Cui; X. F. Cui; H. L. Dai; J. P. Dai; X. C. Dai; A. Dbeyssi; R. E. de Boer; D. Dedovich; Z. Y. Deng; A. Denig; I. Denysenko; M. Destefanis; F. De Mori; Y. Ding; C. Dong; J. Dong; L. Y. Dong; M. Y. Dong; X. Dong; S. X. Du; P. Egorov; Y. L. Fan; J. Fang; S. S. Fang; Y. Fang; R. Farinelli; L. Fava; F. Feldbauer; G. Felici; C. Q. Feng; J. H. Feng; M. Fritsch; C. D. Fu; Y. Gao; Y. Gao; I. Garzia; P. T. Ge; C. Geng; E. M. Gersabeck; A Gilman; K. Goetzen; L. Gong; W. X. Gong; W. Gradl; M. Greco; L. M. Gu; M. H. Gu; C. Y Guan; A. Q. Guo; A. Q. Guo; L. B. Guo; R. P. Guo; Y. P. Guo; A. Guskov; T. T. Han; W. Y. Han; X. Q. Hao; F. A. Harris; K. K. He; K. L. He; F. H. Heinsius; C. H. Heinz; Y. K. Heng; C. Herold; M. Himmelreich; T. Holtmann; G. Y. Hou; Y. R. Hou; Z. L. Hou; H. M. Hu; J. F. Hu; T. Hu; Y. Hu; G. S. Huang; L. Q. Huang; X. T. Huang; Y. P. Huang; Z. Huang; T. Hussain; N Hüsken; W. Ikegami Andersson; W. Imoehl; M. Irshad; S. Jaeger; S. Janchiv; Q. Ji; Q. P. Ji; X. B. Ji; X. L. Ji; Y. Y. Ji; H. B. Jiang; X. S. Jiang; J. B. Jiao; Z. Jiao; S. Jin; Y. Jin; M. Q. Jing; T. Johansson; N. Kalantar-Nayestanaki; X. S. Kang; R. Kappert; M. Kavatsyuk; B. C. Ke; I. K. Keshk; A. Khoukaz; P. Kiese; R. Kiuchi; R. Kliemt; L. Koch; O. B. Kolcu; B. Kopf; M. Kuemmel; M. Kuessner; A. Kupsc; M. G. Kurth; W. Kühn; J. J. Lane; J. S. Lange; P. Larin; A. Lavania; L. Lavezzi; Z. H. Lei; H. Leithoff; M. Lellmann; T. Lenz; C. Li; C. H. Li; Cheng Li; D. M. Li; F. Li; G. Li; H. Li; H. Li; H. B. Li; H. J. Li; H. N. Li; J. L. Li; J. Q. Li; J. S. Li; Ke Li; L. K. Li; Lei Li; P. R. Li; S. Y. Li; W. D. Li; W. G. Li; X. H. Li; X. L. Li; Xiaoyu Li; Z. Y. Li; H. Liang; H. Liang; H. Liang; Y. F. Liang; Y. T. Liang; G. R. Liao; L. Z. Liao; J. Libby; A. Limphirat; C. X. Lin; D. X. Lin; T. Lin; B. J. Liu; C. X. Liu; D. Liu; F. H. Liu; Fang Liu; Feng Liu; G. M. Liu; H. M. Liu; Huanhuan Liu; Huihui Liu; J. B. Liu; J. L. Liu; J. Y. Liu; K. Liu; K. Y. Liu; Ke Liu; L. Liu; M. H. Liu; P. L. Liu; Q. Liu; Q. Liu; S. B. Liu; T. Liu; T. Liu; W. M. Liu; X. Liu; Y. Liu; Y. B. Liu; Z. A. Liu; Z. Q. Liu; X. C. Lou; F. X. Lu; H. J. Lu; J. D. Lu; J. G. Lu; X. L. Lu; Y. Lu; Y. P. Lu; C. L. Luo; M. X. Luo; P. W. Luo; T. Luo; X. L. Luo; X. R. Lyu; F. C. Ma; H. L. Ma; L. L. Ma; M. M. Ma; Q. M. Ma; R. Q. Ma; R. T. Ma; X. X. Ma; X. Y. Ma; Y. Ma; F. E. Maas; M. Maggiora; S. Maldaner; S. Malde; Q. A. Malik; A. Mangoni; Y. J. Mao; Z. P. Mao; S. Marcello; Z. X. Meng; J. G. Messchendorp; G. Mezzadri; T. J. Min; R. E. Mitchell; X. H. Mo; N. Yu. Muchnoi; H. Muramatsu; S. Nakhoul; Y. Nefedov; F. Nerling; I. B. Nikolaev; Z. Ning; S. Nisar; S. L. Olsen; Q. Ouyang; S. Pacetti; X. Pan; Y. Pan; A. Pathak; A. Pathak; P. Patteri; M. Pelizaeus; H. P. Peng; K. Peters; J. Pettersson; J. L. Ping; R. G. Ping; S. Plura; S. Pogodin; R. Poling; V. Prasad; H. Qi; H. R. Qi; M. Qi; T. Y. Qi; S. Qian; W. B. Qian; Z. Qian; C. F. Qiao; J. J. Qin; L. Q. Qin; X. P. Qin; X. S. Qin; Z. H. Qin; J. F. Qiu; S. Q. Qu; K. H. Rashid; K. Ravindran; C. F. Redmer; A. Rivetti; V. Rodin; M. Rolo; G. Rong; Ch. Rosner; M. Rump; H. S. Sang; A. Sarantsev; Y. Schelhaas; C. Schnier; K. Schoenning; M. Scodeggio; W. Shan; X. Y. Shan; J. F. Shangguan; M. Shao; C. P. Shen; H. F. Shen; X. Y. Shen; H. C. Shi; R. S. Shi; X. Shi; X. D Shi; J. J. Song; W. M. Song; Y. X. Song; S. Sosio; S. Spataro; F. Stieler; K. X. Su; P. P. Su; G. X. Sun; H. K. Sun; J. F. Sun; L. Sun; S. S. Sun; T. Sun; W. Y. Sun; X Sun; Y. J. Sun; Y. Z. Sun; Z. T. Sun; Y. H. Tan; Y. X. Tan; C. J. Tang; G. Y. Tang; J. Tang; Q. T. Tao; J. X. Teng; V. Thoren; W. H. Tian; Y. T. Tian; I. Uman; B. Wang; C. W. Wang; D. Y. Wang; H. J. Wang; H. P. Wang; K. Wang; L. L. Wang; M. Wang; M. Z. Wang; Meng Wang; S. Wang; W. Wang; W. H. Wang; W. P. Wang; X. Wang; X. F. Wang; X. L. Wang; Y. Wang; Y. D. Wang; Y. F. Wang; Y. Q. Wang; Y. Y. Wang; Z. Wang; Z. Y. Wang; Ziyi Wang; Zongyuan Wang; D. H. Wei; F. Weidner; S. P. Wen; D. J. White; U. Wiedner; G. Wilkinson; M. Wolke; L. Wollenberg; J. F. Wu; L. H. Wu; L. J. Wu; X. Wu; X. H. Wu; Z. Wu; L. Xia; T. Xiang; H. Xiao; S. Y. Xiao; Z. J. Xiao; X. H. Xie; Y. G. Xie; Y. H. Xie; T. Y. Xing; C. J. Xu; G. F. Xu; Q. J. Xu; W. Xu; X. P. Xu; Y. C. Xu; F. Yan; L. Yan; W. B. Yan; W. C. Yan; H. J. Yang; H. X. Yang; L. Yang; S. L. Yang; Y. X. Yang; Yifan Yang; Zhi Yang; M. Ye; M. H. Ye; J. H. Yin; Z. Y. You; B. X. Yu; C. X. Yu; G. Yu; J. S. Yu; T. Yu; C. Z. Yuan; L. Yuan; Y. Yuan; Z. Y. Yuan; C. X. Yue; A. A. Zafar; X. Zeng Zeng; Y. Zeng; A. Q. Zhang; B. X. Zhang; G. Y. Zhang; H. Zhang; H. H. Zhang; H. H. Zhang; H. Y. Zhang; J. L. Zhang; J. Q. Zhang; J. W. Zhang; J. Y. Zhang; J. Z. Zhang; Jianyu Zhang; Jiawei Zhang; L. M. Zhang; L. Q. Zhang; Lei Zhang; S. Zhang; S. F. Zhang; Shulei Zhang; X. D. Zhang; X. M. Zhang; X. Y. Zhang; Y. Zhang; Y. T. Zhang; Y. H. Zhang; Yan Zhang; Yao Zhang; Z. Y. Zhang; G. Zhao; J. Zhao; J. Y. Zhao; J. Z. Zhao; Lei Zhao; Ling Zhao; M. G. Zhao; Q. Zhao; S. J. Zhao; Y. B. Zhao; Y. X. Zhao; Z. G. Zhao; A. Zhemchugov; B. Zheng; J. P. Zheng; Y. H. Zheng; B. Zhong; C. Zhong; L. P. Zhou; Q. Zhou; X. Zhou; X. K. Zhou; X. R. Zhou; X. Y. Zhou; A. N. Zhu; J. Zhu; K. Zhu; K. J. Zhu; S. H. Zhu; T. J. Zhu; W. J. Zhu; W. J. Zhu; Y. C. Zhu; Z. A. Zhu; B. S. Zou; J. H. Zou
<jats:title>Abstract</jats:title> <jats:p>Using inclusive decays of <jats:inline-formula> <jats:tex-math><?CDATA $J/\psi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074001_Z-20220328094009.jpg" xlink:type="simple" /> </jats:inline-formula>, a precise determination of the number of <jats:inline-formula> <jats:tex-math><?CDATA $J/\psi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074001_Z-20220328094029.jpg" xlink:type="simple" /> </jats:inline-formula> events collected with the BESIII detector was performed. For the two data sets taken in 2009 and 2012, the numbers of <jats:inline-formula> <jats:tex-math><?CDATA $J/\psi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074001_Z-20220328094039.jpg" xlink:type="simple" /> </jats:inline-formula> events were recalculated to be <jats:inline-formula> <jats:tex-math><?CDATA $ (224.0 \pm 1.3)\times10^6 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074001_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ (1088.5 \pm 4.4)\times10^6 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074001_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, respectively; these numbers are in good agreement with the previous measurements. For the <jats:inline-formula> <jats:tex-math><?CDATA $J/\psi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074001_Z-20220328094047.jpg" xlink:type="simple" /> </jats:inline-formula> sample taken in 2017–2019, the number of events was determined to be <jats:inline-formula> <jats:tex-math><?CDATA $ (8774.0 \pm 39.4)\times10^{6} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074001_M3.jpg" xlink:type="simple" /> </jats:inline-formula>. The total number of <jats:inline-formula> <jats:tex-math><?CDATA $J/\psi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074001_Z-20220328094056.jpg" xlink:type="simple" /> </jats:inline-formula> events collected with the BESIII detector was determined to be <jats:inline-formula> <jats:tex-math><?CDATA $ (10087 \pm 44)\times10^{6} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074001_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, where the uncertainty is dominated by systematic effects, and the statistical uncertainty is negligible. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074001
Using as a spin polarimeter *
Dai-Hui Wei; Yong-Xu Yang; Rong-Gang Ping
<jats:title>Abstract</jats:title> <jats:p>Polarization transfer measurement plays an important role in the search for new physics processes in charmed baryon decays. The measurement of the <jats:inline-formula> <jats:tex-math><?CDATA $ {\Lambda_c^+}\to {pK^-\pi^+} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074002_M2.jpg" xlink:type="simple" /> </jats:inline-formula> decay is suggested as a spin polarimeter. A general description of the decay is developed using Euler angles, and the polarization parameters are derived. Its relationship with parity violation is found using the phenomenological amplitude model. A Monte-Carlo simulation is performed, and the results show that charmed baryon polarization is well determined using a set of Monte-Carlo events with selected asymmetry parameters. The experimental measurement of these asymmetry parameters is suggested. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074002
New γ-soft rotation in the interacting boson model with SU(3) higher-order interactions *
Tao Wang
<jats:title>Abstract</jats:title> <jats:p>The interacting boson model with <jats:inline-formula> <jats:tex-math><?CDATA $S U(3)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074101_M1.jpg" xlink:type="simple" /> </jats:inline-formula> higher-order interactions offers a new route to enhance our understanding on <jats:italic>γ</jats:italic>-soft rotation. In this paper, <jats:inline-formula> <jats:tex-math><?CDATA $ U(5) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074101_M2.jpg" xlink:type="simple" /> </jats:inline-formula>-like and <jats:inline-formula> <jats:tex-math><?CDATA $ O(6) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074101_M3.jpg" xlink:type="simple" /> </jats:inline-formula>-like new <jats:italic>γ</jats:italic>-softness are observed, in which the corresponding energy levels in the ground and quasi-<jats:italic>γ</jats:italic> bands can be exactly degenerate and have a partial <jats:inline-formula> <jats:tex-math><?CDATA $ O(5) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074101_M4.jpg" xlink:type="simple" /> </jats:inline-formula> dynamical symmetry. The spherical-like <jats:italic>γ</jats:italic>-softness is not related to the classical <jats:inline-formula> <jats:tex-math><?CDATA $ O(6) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074101_M5.jpg" xlink:type="simple" /> </jats:inline-formula> dynamical symmetry. The transitional behaviors of <jats:inline-formula> <jats:tex-math><?CDATA $ B(E2) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074101_M6.jpg" xlink:type="simple" /> </jats:inline-formula> values of the low-lying levels and quadrupole moment of the <jats:inline-formula> <jats:tex-math><?CDATA $ 2^{+}_{1} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074101_M7.jpg" xlink:type="simple" /> </jats:inline-formula> state are also discussed. Spherical-like <jats:italic>γ</jats:italic>-softness can be used to explain the low-lying spectra and <jats:inline-formula> <jats:tex-math><?CDATA $ B(E2) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074101_M8.jpg" xlink:type="simple" /> </jats:inline-formula> values in <jats:sup>110</jats:sup>Cd normal states. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074101
Seniority and configurations in neutron-rich Nickel isotopes *
S. Sidorov; D. Zhulyaeva; T. Tretyakova
<jats:title>Abstract</jats:title> <jats:p>Excited states in low-energy spectra of <jats:inline-formula> <jats:tex-math><?CDATA $ ^{70-76} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074102_M2.jpg" xlink:type="simple" /> </jats:inline-formula>Ni are considered. Accordingly, pairing forces in the form of surface delta interaction are employed to account for the formation of the ground state multiplet with seniority <jats:inline-formula> <jats:tex-math><?CDATA $ \nu = 2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074102_M3.jpg" xlink:type="simple" /> </jats:inline-formula> states. The multiplet splitting is described with mass relationships of masses of neighboring nuclei. Subsequently, the seniority model is adopted to reproduce or predict the states <jats:inline-formula> <jats:tex-math><?CDATA $ \nu = 3 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074102_M4.jpg" xlink:type="simple" /> </jats:inline-formula> in odd-even isotopes and <jats:inline-formula> <jats:tex-math><?CDATA $ \nu = 4 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074102_M5.jpg" xlink:type="simple" /> </jats:inline-formula> in even-even isotopes. The correct account of the <jats:inline-formula> <jats:tex-math><?CDATA $ 2_1^+ $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074102_M6.jpg" xlink:type="simple" /> </jats:inline-formula> state should allow for the description of the reversed order of <jats:inline-formula> <jats:tex-math><?CDATA $ J = 4 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074102_M7.jpg" xlink:type="simple" /> </jats:inline-formula> states with <jats:inline-formula> <jats:tex-math><?CDATA $ \nu = 2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074102_M8.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \nu = 4 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074102_M9.jpg" xlink:type="simple" /> </jats:inline-formula> observed in experiments. The results obtained are compared with the structure of similar multiplets in <jats:inline-formula> <jats:tex-math><?CDATA $ N=50 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074102_M10.jpg" xlink:type="simple" /> </jats:inline-formula> isotones. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074102