Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics C

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1137

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

Multi-quasiparticle excitations and the impact of the high-j intruder orbital in the N = 51 93Mo nucleus *

Hao Wang; Ke-Yan Ma; Yi-Heng Wu; Yi-Feng Lv; Hao-Nan Pan; Jing-Bin Lu

<jats:title>Abstract</jats:title> <jats:p>The level structures of <jats:inline-formula> <jats:tex-math><?CDATA $^{93}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014001_M1.jpg" xlink:type="simple" /> </jats:inline-formula>Mo are investigated using Large Scale Shell Model calculations, and reasonable agreement is obtained between the experimental and calculated values. The calculated results show that the lower-lying states are mainly dominated by proton excitations from the <jats:inline-formula> <jats:tex-math><?CDATA $1f_{5/2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014001_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $2p_{3/2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014001_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $2p_{1/2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014001_M4.jpg" xlink:type="simple" /> </jats:inline-formula> orbitals into the higher orbitals across the <jats:italic>Z</jats:italic> = 38 or <jats:italic>Z</jats:italic> = 40 subshell closure. For the higher-spin states, multi-particle excitations, including the excitation of <jats:inline-formula> <jats:tex-math><?CDATA $2d_{5/2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014001_M5.jpg" xlink:type="simple" /> </jats:inline-formula> neutrons across the <jats:italic>N</jats:italic> = 56 subshell closure into the high-<jats:italic>j</jats:italic> intruder <jats:inline-formula> <jats:tex-math><?CDATA $1h_{11/2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014001_M6.jpg" xlink:type="simple" /> </jats:inline-formula> orbital, are essential. Moreover, the previously unknown spin-parity assignments of the six higher excited states in <jats:inline-formula> <jats:tex-math><?CDATA $^{93}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014001_M7.jpg" xlink:type="simple" /> </jats:inline-formula>Mo are inferred from the shell model calculations. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 014001

Fragment emission and critical behavior in light and heavy charged systems *

Samiksha Sood; Rohit Kumar; Arun Sharma; Sakshi Gautam; Rajeev K. Puri

<jats:title>Abstract</jats:title> <jats:p>We study the emission of fragments in central collisions of light and heavily charged systems of <jats:sup>40</jats:sup>Ar+<jats:sup>45</jats:sup>Sc and <jats:sup>84</jats:sup>Kr+<jats:sup>197</jats:sup>Au, respectively, using the Quantum Molecular Dynamics (QMD) model as the primary model. The fragments are identified using an energy based clusterization algorithm, i.e., the Simulated Annealing Clusterization Algorithm (SACA). The charge distributions of intermediate mass fragments [3≤ <jats:inline-formula> <jats:tex-math><?CDATA $ Z_{f} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014101_M6.jpg" xlink:type="simple" /> </jats:inline-formula>≤12] are fitted with power-law ( <jats:inline-formula> <jats:tex-math><?CDATA $ \propto Z_{f} ^{-\tau} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014101_M8.jpg" xlink:type="simple" /> </jats:inline-formula>) and exponential ( <jats:inline-formula> <jats:tex-math><?CDATA $ \propto {\rm{e}} ^{-\lambda {Z_{f}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014101_M11.jpg" xlink:type="simple" /> </jats:inline-formula>) fits in order to extract the parameters <jats:italic>τ</jats:italic> and <jats:inline-formula> <jats:tex-math><?CDATA $ \lambda ,$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014101_M15.jpg" xlink:type="simple" /> </jats:inline-formula> whose minimum values are also sometimes linked with the onset of fragmentation or the critical point for a liquid-gas phase transition. Other parameters such as the normalized second moment <jats:inline-formula> <jats:tex-math><?CDATA $ \lt S_2 \gt $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014101_M16.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \lt \gamma_2 \gt $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014101_M17.jpg" xlink:type="simple" /> </jats:inline-formula>, average size of the second largest cluster <jats:inline-formula> <jats:tex-math><?CDATA $ \lt Z_{\rm max2} \gt $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014101_M18.jpg" xlink:type="simple" /> </jats:inline-formula>, phase separation parameter ( <jats:inline-formula> <jats:tex-math><?CDATA $ S_p $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014101_M19.jpg" xlink:type="simple" /> </jats:inline-formula>), bimodal parameter (<jats:italic>P</jats:italic>), information entropy (<jats:italic>H</jats:italic>), and Zipf's law are also analyzed to find the exact energy of the onset of fragmentation. Our detailed analysis predicts that an energy point exists between 20-23.1 MeV/nucleon, which is very close to the experimentally observed value of 23.9 MeV/nucleon for the <jats:sup>40</jats:sup>Ar+<jats:sup>45</jats:sup>Sc reaction. We also find that the critical energy deduced using Zipf's law is higher than those predicted from other critical exponents. Moreover, no minimum is found for <jats:italic>τ</jats:italic> values of the highly charged system of <jats:sup>84</jats:sup>Kr+<jats:sup>197</jats:sup>Au, in agreement with experimental findings and various theoretical calculations. We observe that the QMD + SACA model calculations are in agreement with the experimental observations. This agreement supports our results regarding the energy point of the liquid-gas phase transition and the onset of fragmentation. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 014101

Rapidity dependence of global polarization in heavy ion collisions *

Zuo-Tang Liang; Jun Song; Isaac Upsal; Qun Wang; Zhangbu Xu

<jats:title>Abstract</jats:title> <jats:p>We use a geometric model for hadron polarization in heavy ion collisions with an emphasis on the rapidity dependence. The model is based on the model of Brodsky, Gunion, and Kuhn, as well as the Bjorken scaling model. We make predictions regarding the rapidity dependence of global <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014102_M1.jpg" xlink:type="simple" /> </jats:inline-formula> polarization in the collision energy range of 7.7-200 GeV by assuming the rapidity dependence of two parameters, <jats:inline-formula> <jats:tex-math><?CDATA $\kappa$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014102_M2.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\left\langle p_{T}\right\rangle $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014102_M3.jpg" xlink:type="simple" /> </jats:inline-formula>. The predictions can be tested by future beam-energy-scan experiments at the Relativistic Heavy Ion Collider of Brookhaven National Lab. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 014102

Solution to the Sudakov suppressed Balitsky-Kovchegov equation and its application to HERA data *

Wen-Chang Xiang; Meng-Liang Wang; Yan-Bing Cai; Dai-Cui Zhou

<jats:title>Abstract</jats:title> <jats:p>We analytically solve the Sudakov suppressed Balitsky-Kovchegov evolution equation with fixed and running coupling constants in the saturation region. The analytic solution of the <jats:italic>S</jats:italic>-matrix shows that the <jats:inline-formula> <jats:tex-math><?CDATA $\exp(-{\cal{O}}(\eta^2))$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014103_M1.jpg" xlink:type="simple" /> </jats:inline-formula> rapidity dependence of the solution with the fixed coupling constant is replaced by the <jats:inline-formula> <jats:tex-math><?CDATA $\exp(-{\cal{O}}(\eta^{3/2}))$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014103_M2.jpg" xlink:type="simple" /> </jats:inline-formula> dependence in the smallest dipole running coupling case, as opposed to obeying the law found in our previous publication, where all the solutions of the next-to-leading order evolution equations comply with <jats:inline-formula> <jats:tex-math><?CDATA $\exp(-{\cal{O}}(\eta))$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014103_M3.jpg" xlink:type="simple" /> </jats:inline-formula> rapidity dependence once the QCD coupling is switched from the fixed coupling to the smallest dipole running coupling prescription. This finding indicates that the corrections of the sub-leading double logarithms in the Sudakov suppressed evolution equation are significant, which compensate for a part of the evolution decrease of the dipole amplitude introduced by the running coupling effect. To test the analytic findings, we calculate the numerical solutions of the Sudakov suppressed evolution equation, and the numerical results confirm the analytic outcomes. Moreover, we use the numerical solutions of the evolution equationto fit the HERA data. This demonstrates that the Sudakov suppressed evolution equation can achieve a good quality fit to the data. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 014103

Dispersive analysis of low energy γN→πN process and studies on the N*(890) resonance *

Yao Ma; Wen-Qi Niu; De-Liang Yao; Han-Qing Zheng

<jats:title>Abstract</jats:title> <jats:p>We present a dispersive representation of the <jats:inline-formula> <jats:tex-math><?CDATA $ \gamma N\rightarrow \pi N $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014104_M3.jpg" xlink:type="simple" /> </jats:inline-formula> partial-wave amplitude based on unitarity and analyticity. In this representation, the right-hand-cut contribution responsible for <jats:inline-formula> <jats:tex-math><?CDATA $ \pi N $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014104_M4.jpg" xlink:type="simple" /> </jats:inline-formula> final-state-interaction effects is taken into account via an Omnés formalism with elastic <jats:inline-formula> <jats:tex-math><?CDATA $ \pi N $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014104_M5.jpg" xlink:type="simple" /> </jats:inline-formula> phase shifts as inputs, while the left-hand-cut contribution is estimated by invoking chiral perturbation theory. Numerical fits are performed to pin down the involved subtraction constants. Good fit quality can be achieved with only one free parameter, and the experimental data regarding the multipole amplitude <jats:inline-formula> <jats:tex-math><?CDATA $ E_{0}^+ $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014104_M6.jpg" xlink:type="simple" /> </jats:inline-formula> in the energy region below the <jats:inline-formula> <jats:tex-math><?CDATA $ \Delta(1232) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014104_M7.jpg" xlink:type="simple" /> </jats:inline-formula> are well described. Furthermore, we extend the <jats:inline-formula> <jats:tex-math><?CDATA $ \gamma N\rightarrow \pi N $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014104_M8.jpg" xlink:type="simple" /> </jats:inline-formula> partial-wave amplitude to the second Riemann sheet to extract the couplings of the <jats:inline-formula> <jats:tex-math><?CDATA $ N^\ast(890) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014104_M9.jpg" xlink:type="simple" /> </jats:inline-formula>. The modulus of the residue of the multipole amplitude <jats:inline-formula> <jats:tex-math><?CDATA $ E_{0}^+ $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014104_M10.jpg" xlink:type="simple" /> </jats:inline-formula> (<jats:italic>S</jats:italic> <jats:inline-formula> <jats:tex-math><?CDATA $ {_{11}pE} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014104_M11.jpg" xlink:type="simple" /> </jats:inline-formula>) is <jats:inline-formula> <jats:tex-math><?CDATA $ 2.41\;\rm{mfm\cdot GeV^2} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014104_M12.jpg" xlink:type="simple" /> </jats:inline-formula>, and the partial width of <jats:inline-formula> <jats:tex-math><?CDATA $ N^*(890)\to\gamma N $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014104_M13.jpg" xlink:type="simple" /> </jats:inline-formula> at the pole is approximately <jats:inline-formula> <jats:tex-math><?CDATA $ 0.369\ {\rm MeV} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014104_M14.jpg" xlink:type="simple" /> </jats:inline-formula>, which is almost the same as that of the <jats:inline-formula> <jats:tex-math><?CDATA $ N^*(1535) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014104_M15.jpg" xlink:type="simple" /> </jats:inline-formula> resonance, indicating that <jats:inline-formula> <jats:tex-math><?CDATA $ N^\ast(890) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014104_M16.jpg" xlink:type="simple" /> </jats:inline-formula> strongly couples to the <jats:inline-formula> <jats:tex-math><?CDATA $ \pi N $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014104_M17.jpg" xlink:type="simple" /> </jats:inline-formula> system. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 014104

Fully self-consistent calculation of β-decay half-lives within Skyrme energy density functional *

Pei-Wei Wen; Shi-Sheng Zhang; Li-Gang Cao; Feng-Shou Zhang

<jats:title>Abstract</jats:title> <jats:p> <jats:inline-formula> <jats:tex-math><?CDATA $\beta$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014105_M3.jpg" xlink:type="simple" /> </jats:inline-formula>-decay half-lives of some magic and semi-magic nuclei have been studied in a fully self-consistent Skyrme Hartree-Fock (HF) plus charge-exchange random phase approximation (RPA). The self-consistency is addressed, in that the same Skyrme energy density functional is adopted in the calculation of ground states and Gamow-Teller excited states. First, the impact of <jats:inline-formula> <jats:tex-math><?CDATA ${{J}}^2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014105_M2.jpg" xlink:type="simple" /> </jats:inline-formula> terms on the <jats:inline-formula> <jats:tex-math><?CDATA $\beta$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014105_M3.jpg" xlink:type="simple" /> </jats:inline-formula>-decay half-lives is investigated by using the SGII interaction, revealing a large influence. Subsequently, numerical calculations are performed for the selected nuclei with Skyrme energy density functionals SGII, LNS, SKX, and SAMi. Finally, comparisons to available experimental data and predictions of different theoretical models are discussed. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 014105

Isospin dependence of the nuclear binding energy *

Y. Q. He; J. K. Ge; G. J. Fu; H. Jiang

<jats:title>Abstract</jats:title> <jats:p>In this paper, we study the symmetry energy and the Wigner energy in the binding energy formula for atomic nuclei. We simultaneously extract the <jats:inline-formula> <jats:tex-math><?CDATA $I^2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014106_M1.jpg" xlink:type="simple" /> </jats:inline-formula> symmetry energy and Wigner energy coefficients using the double difference of "experimental" symmetry-Wigner energies, based on the binding energy data of nuclei with <jats:inline-formula> <jats:tex-math><?CDATA $A \geqslant 16$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014106_M2.jpg" xlink:type="simple" /> </jats:inline-formula>. Our study of the triple difference formula and the "experimental" symmetry-Wigner energy suggests that the macroscopic isospin dependence of binding energies is explained well by the <jats:inline-formula> <jats:tex-math><?CDATA $I^{2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014106_M3.jpg" xlink:type="simple" /> </jats:inline-formula> symmetry energy and the Wigner energy, and further consideration of the <jats:inline-formula> <jats:tex-math><?CDATA $I^{4}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014106_M4.jpg" xlink:type="simple" /> </jats:inline-formula> term in the binding energy formula does not substantially improve the calculation result. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 014106

Production of vector mesons in pentaquark state resonance channel in p-A ultraperipheral collisions *

Ya-Ping Xie; Xiao-Yun Wang; Xurong Chen

<jats:title>Abstract</jats:title> <jats:p>Ultraperipheral collisions (UPCs) of protons and nuclei are important for the study of the photoproduction of vector mesons and exotic states. The photoproduction of vector mesons in the pentaquark resonance channel in <jats:italic>p</jats:italic>- <jats:inline-formula> <jats:tex-math><?CDATA ${\rm Au} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014107_M3.jpg" xlink:type="simple" /> </jats:inline-formula> UPCs at the Relative Heavy Ion Collider (RHIC) and <jats:italic>p</jats:italic>- <jats:inline-formula> <jats:tex-math><?CDATA $ {\rm Pb} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014107_M4.jpg" xlink:type="simple" /> </jats:inline-formula> UPCs at the Large Hadron Collider (LHC) is investigated by employing the STARlight package. The cross sections of vector mesons via the pentaquark state resonance channel are obtained using the effective Lagrangian method. The pseudo-rapidity and rapidity distributions of <jats:inline-formula> <jats:tex-math><?CDATA $ J/\psi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014107_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \Upsilon(1S) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014107_M7.jpg" xlink:type="simple" /> </jats:inline-formula> are given for <jats:italic>p</jats:italic>- <jats:inline-formula> <jats:tex-math><?CDATA ${\rm Au} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014107_M8.jpg" xlink:type="simple" /> </jats:inline-formula> UPCs at the RHIC and <jats:italic>p</jats:italic>- <jats:inline-formula> <jats:tex-math><?CDATA $ {\rm Pb} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014107_M10.jpg" xlink:type="simple" /> </jats:inline-formula>UPCs at the LHC. It is found that the RHIC is a better platform for discovering pentaquark states than the LHC. Moreover, <jats:inline-formula> <jats:tex-math><?CDATA $ P_{b}(11080) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014107_M11.jpg" xlink:type="simple" /> </jats:inline-formula> is easier to identify than <jats:inline-formula> <jats:tex-math><?CDATA $ P_c(4312) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014107_M12.jpg" xlink:type="simple" /> </jats:inline-formula> because the background of <jats:inline-formula> <jats:tex-math><?CDATA $ \Upsilon (1S) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014107_M13.jpg" xlink:type="simple" /> </jats:inline-formula> is weaker than that of <jats:inline-formula> <jats:tex-math><?CDATA $ J/\psi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014107_M14.jpg" xlink:type="simple" /> </jats:inline-formula> in the <jats:italic>t</jats:italic>-channel at the RHIC. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 014107

Deuteron inelastic scattering on 6Li and 7Li nuclei within the three-body cluster model *

M. V. Egorov; V. I. Postnikov

<jats:title>Abstract</jats:title> <jats:p>The problem of the deuteron interaction with lithium nuclei, treated as a system of two coupled pointlike clusters, is formulated to calculate the cross sections of the <jats:italic>d</jats:italic>+Li reaction. The <jats:italic>d</jats:italic>+Li reaction mechanism is described using the Faddeev theory for the three-body problem of deuteron-nucleus interaction. This theory is slightly extended for calculation of the stripping processes <jats:sup>6</jats:sup>Li(<jats:italic>d</jats:italic>,<jats:italic>p</jats:italic>)<jats:sup>7</jats:sup>Li, <jats:sup>7</jats:sup>Li(<jats:italic>d</jats:italic>,<jats:italic>p</jats:italic>)<jats:sup>8</jats:sup>Li, <jats:sup>6</jats:sup>Li(<jats:italic>d</jats:italic>,<jats:italic>n</jats:italic>)<jats:sup>7</jats:sup>Be, and <jats:sup>7</jats:sup>Li(<jats:italic>d</jats:italic>,<jats:italic>n</jats:italic>)<jats:sup>8</jats:sup>Be, as well as fragmentation reactions yielding tritium, <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014108_M1.jpg" xlink:type="simple" /> </jats:inline-formula>-particles, and continuous neutrons and protons in the initial deuteron kinetic-energy region <jats:inline-formula> <jats:tex-math><?CDATA $E_d=0.5-20$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014108_M2.jpg" xlink:type="simple" /> </jats:inline-formula> MeV. The phase shifts found for <jats:inline-formula> <jats:tex-math><?CDATA $d+^6$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014108_M3.jpg" xlink:type="simple" /> </jats:inline-formula>Li and <jats:inline-formula> <jats:tex-math><?CDATA $d+^7$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014108_M4.jpg" xlink:type="simple" /> </jats:inline-formula>Li elastic scattering, as part of the simple optic model with a complex central potential, were used to find the cross sections for the <jats:sup>6</jats:sup>Li <jats:inline-formula> <jats:tex-math><?CDATA $(d,\gamma_{M1})^8{\rm{Be}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014108_M5.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:sup>7</jats:sup>Li <jats:inline-formula> <jats:tex-math><?CDATA $(d,\gamma_{E1})^9{\rm{Be}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014108_M6.jpg" xlink:type="simple" /> </jats:inline-formula> radiation captures. The three-body dynamics role is also summarized to demonstrate its significant influence within the <jats:inline-formula> <jats:tex-math><?CDATA $d+^7$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014108_M7.jpg" xlink:type="simple" /> </jats:inline-formula>Li system. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 014108

Possible light neutral boson and particle mass quantization *

Tao-Feng Wang; Zi-Ming Li; Xiao-Ting Yang

<jats:title>Abstract</jats:title> <jats:p>Qualities of nucleons, such as the fundamental parameter mass, might be modified in extreme conditions relative to those of isolated nucleons. We show the ratio of the EMC-effect tagged nucleon mass to that of the free one ( <jats:inline-formula> <jats:tex-math><?CDATA $m^{\ast}/m$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014109_M1.jpg" xlink:type="simple" /> </jats:inline-formula>); these values are derived from the nuclear structure function ratio between heavy nuclei and deuterium measured in the electron Deep Inelastic Scattering (DIS) reaction in 0.3 <jats:inline-formula> <jats:tex-math><?CDATA $\leqslant x\leqslant $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014109_M2.jpg" xlink:type="simple" /> </jats:inline-formula>0.7. The increase in <jats:inline-formula> <jats:tex-math><?CDATA $m^{\ast}/m$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014109_M3.jpg" xlink:type="simple" /> </jats:inline-formula> with <jats:inline-formula> <jats:tex-math><?CDATA $A^{-1/3}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014109_M4.jpg" xlink:type="simple" /> </jats:inline-formula> is phenomenologically interpreted via the release of a color-singlet cluster formed by sea quarks and gluons in bound nucleons holding high momentum in the nucleus, from which the mass and fraction of non-nucleonic components in nuclei can be deduced. The mass of color-singlet clusters released per short range correlated (SRC) proton in the high momentum region ( <jats:inline-formula> <jats:tex-math><?CDATA $k \gt,;$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014109_M5.jpg" xlink:type="simple" /> </jats:inline-formula> 2 fm <jats:inline-formula> <jats:tex-math><?CDATA $^{-1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014109_M6.jpg" xlink:type="simple" /> </jats:inline-formula>) is extracted to be 16.890 <jats:inline-formula> <jats:tex-math><?CDATA $\pm$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014109_M7.jpg" xlink:type="simple" /> </jats:inline-formula>0.016 MeV/c <jats:inline-formula> <jats:tex-math><?CDATA $^{2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_014109_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, which evidences the possibility of a light neutral boson and quantized mass of matter. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 014109