Catálogo de publicaciones - revistas


Chinese Physics B

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics B covers the latest developments and achievements in all branches of physics. Articles, including papers and rapid communications, are those approved as creative contributions to the whole discipline of physics and of significance to their own fields.
Palabras clave – provistas por la editorial

No disponibles.

Historia

Continúa: Chinese Physics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1056

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

Compact finite difference schemes for the backward fractional Feynman–Kac equation with fractional substantial derivative*

Jiahui Hu; Jungang Wang; Yufeng Nie; Yanwei Luo

<jats:p>The fractional Feynman–Kac equations describe the distributions of functionals of non-Brownian motion, or anomalous diffusion, including two types called the forward and backward fractional Feynman–Kac equations, where the non-local time–space coupled fractional substantial derivative is involved. This paper focuses on the more widely used backward version. Based on the newly proposed approximation operators for fractional substantial derivative, we establish compact finite difference schemes for the backward fractional Feynman–Kac equation. The proposed difference schemes have the <jats:italic>q</jats:italic>-th (<jats:italic>q</jats:italic> = 1,2,3,4) order accuracy in temporal direction and fourth order accuracy in spatial direction, respectively. The numerical stability and convergence in the maximum norm are proved for the first order time discretization scheme by the discrete energy method, where an inner product in complex space is introduced. Finally, extensive numerical experiments are carried out to verify the availability and superiority of the algorithms. Also, simulations of the backward fractional Feynman–Kac equation with Dirac delta function as the initial condition are performed to further confirm the effectiveness of the proposed methods.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 100201

Exact solutions of a (2+1)-dimensional extended shallow water wave equation*

Feng Yuan; Jing-Song He; Yi Cheng

<jats:p>We give the bilinear form and <jats:italic>n</jats:italic>-soliton solutions of a (2+1)-dimensional [(2+1)-D] extended shallow water wave (eSWW) equation associated with two functions <jats:italic>v</jats:italic> and <jats:italic>r</jats:italic> by using Hirota bilinear method. We provide solitons, breathers, and hybrid solutions of them. Four cases of a crucial <jats:inline-formula> <jats:tex-math> <?CDATA $\phi (y)$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>ϕ</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_10_100202_ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>, which is an arbitrary real continuous function appeared in <jats:italic>f</jats:italic> of bilinear form, are selected by using Jacobi elliptic functions, which yield a periodic solution and three kinds of doubly localized dormion-type solution. The first order Jacobi-type solution travels parallelly along the <jats:italic>x</jats:italic> axis with the velocity <jats:inline-formula> <jats:tex-math> <?CDATA $(3{k}_{1}^{2}+\alpha,0)$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mo stretchy="false">(</mml:mo> <mml:mn>3</mml:mn> <mml:msubsup> <mml:mrow> <mml:mi>k</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>+</mml:mo> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_10_100202_ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> on (<jats:italic>x</jats:italic>, <jats:italic>y</jats:italic>)-plane. If <jats:inline-formula> <jats:tex-math> <?CDATA $\phi (y)=\mathrm{sn}(y,3/10)$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>ϕ</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>sn</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mrow> <mml:mo stretchy="false">/</mml:mo> </mml:mrow> <mml:mn>10</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_10_100202_ieqn3.gif" xlink:type="simple" /> </jats:inline-formula>, it is a periodic solution. If <jats:inline-formula> <jats:tex-math> <?CDATA $\phi (y)=\mathrm{cn}(y,1)$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>ϕ</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>cn</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_10_100202_ieqn4.gif" xlink:type="simple" /> </jats:inline-formula>, it is a dormion-type-I solutions which has a maximum <jats:inline-formula> <jats:tex-math> <?CDATA $(3/4){k}_{1}{p}_{1}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mo stretchy="false">(</mml:mo> <mml:mn>3</mml:mn> <mml:mrow> <mml:mo stretchy="false">/</mml:mo> </mml:mrow> <mml:mn>4</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:msub> <mml:mrow> <mml:mi>k</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:msub> <mml:mrow> <mml:mi>p</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_10_100202_ieqn5.gif" xlink:type="simple" /> </jats:inline-formula> and a minimum <jats:inline-formula> <jats:tex-math> <?CDATA $-(3/4){k}_{1}{p}_{1}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mo>−</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>3</mml:mn> <mml:mrow> <mml:mo stretchy="false">/</mml:mo> </mml:mrow> <mml:mn>4</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:msub> <mml:mrow> <mml:mi>k</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:msub> <mml:mrow> <mml:mi>p</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_10_100202_ieqn6.gif" xlink:type="simple" /> </jats:inline-formula>. The width of the contour line is <jats:inline-formula> <jats:tex-math> <?CDATA $\mathrm{ln}[(2+\sqrt{6}+\sqrt{2}+\sqrt{3})/(2+\sqrt{6}-\sqrt{2}-\sqrt{3})]$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>ln</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> <mml:msqrt> <mml:mrow> <mml:mn>6</mml:mn> </mml:mrow> </mml:msqrt> <mml:mo>+</mml:mo> <mml:msqrt> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msqrt> <mml:mo>+</mml:mo> <mml:msqrt> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msqrt> <mml:mo stretchy="false">)</mml:mo> <mml:mrow> <mml:mo stretchy="false">/</mml:mo> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> <mml:msqrt> <mml:mrow> <mml:mn>6</mml:mn> </mml:mrow> </mml:msqrt> <mml:mo>−</mml:mo> <mml:msqrt> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msqrt> <mml:mo>−</mml:mo> <mml:msqrt> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msqrt> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">]</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_10_100202_ieqn7.gif" xlink:type="simple" /> </jats:inline-formula>. If <jats:inline-formula> <jats:tex-math> <?CDATA $\phi (y)=\mathrm{sn}(y,1)$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>ϕ</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>sn</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_10_100202_ieqn8.gif" xlink:type="simple" /> </jats:inline-formula>, we get a dormion-type-II solution (26) which has only one extreme value <jats:inline-formula> <jats:tex-math> <?CDATA $-(3/2){k}_{1}{p}_{1}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mo>−</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>3</mml:mn> <mml:mrow> <mml:mo stretchy="false">/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:msub> <mml:mrow> <mml:mi>k</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:msub> <mml:mrow> <mml:mi>p</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_10_100202_ieqn9.gif" xlink:type="simple" /> </jats:inline-formula>. The width of the contour line is <jats:inline-formula> <jats:tex-math> <?CDATA $\mathrm{ln}[(\sqrt{2}+1)/(\sqrt{2}-1)]$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>ln</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:msqrt> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msqrt> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mrow> <mml:mo stretchy="false">/</mml:mo> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msqrt> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msqrt> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">]</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_10_100202_ieqn10.gif" xlink:type="simple" /> </jats:inline-formula>. If <jats:inline-formula> <jats:tex-math> <?CDATA $\phi (y)=\mathrm{sn}(y,1/2)/(1+{y}^{2})$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>ϕ</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>sn</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo stretchy="false">/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mrow> <mml:mo stretchy="false">/</mml:mo> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:msup> <mml:mrow> <mml:mi>y</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_10_100202_ieqn11.gif" xlink:type="simple" /> </jats:inline-formula>, we get a dormion-type-III solution (21) which shows very strong doubly localized feature on (<jats:italic>x</jats:italic>,<jats:italic>y</jats:italic>) plane. Moreover, several interesting patterns of the mixture of periodic and localized solutions are also given in graphic way.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 100202

Lump-type solutions of a generalized Kadomtsev–Petviashvili equation in (3+1)-dimensions*

Xue-Ping Cheng; Wen-Xiu Ma; Yun-Qing Yang

<jats:p>Through the Hirota bilinear formulation and the symbolic computation software Maple, we construct lump-type solutions for a generalized (3+1)-dimensional Kadomtsev–Petviashvili (KP) equation in three cases of the coefficients in the equation. Then the sufficient and necessary conditions to guarantee the analyticity of the resulting lump-type solutions (or the positivity of the corresponding quadratic solutions to the associated bilinear equation) are discussed. To illustrate the generality of the obtained solutions, two concrete lump-type solutions are explicitly presented, and to analyze the dynamic behaviors of the solutions specifically, the three-dimensional plots and contour profiles of these two lump-type solutions with particular choices of the involved free parameters are well displayed.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 100203

Boundary states for entanglement robustness under dephasing and bit flip channels*

Hong-Mei Li; Miao-Di Guo; Rui Zhang; Xue-Mei Su

<jats:p>We investigate the robustness of entanglement for a multiqubit system under dephasing and bit flip channels. We exhibit the difference between the entanglement evolution of the two forms of special states, which are locally unitarily equivalent to each other and therefore possess precisely the same entanglement properties, and demonstrate that the difference increases with the number of qubits <jats:italic>n</jats:italic>. Moreover, those two forms of states are either the most robust genuine entangled states or the most fragile ones, which confirm that local unitary (LU) operations can greatly enhance the entanglement robustness of <jats:italic>n</jats:italic>-qubit states.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 100302

Manipulating transition of a two-component Bose–Einstein condensate with a weak δ-shaped laser*

Bo Li; Xiao-Jun Jiang; Xiao-Lin Li; Wen-Hua Hai; Yu-Zhu Wang

<jats:p>We theoretically study the transition dynamics of a two-component Bose–Einstein condensate driven by a train of weak (<jats:italic>δ</jats:italic>-shaped laser pulses. We find that the atomic system can experience peculiar resonant transition even under weak optical excitations and derive the resonance condition by the perturbation method. Employing this mechanism, we propose a scheme to obtain an atomic ensemble with desired odd/even atom number and also a scheme to prepare a nonclassical state of the many-body system with fixed atom number.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 100303

Topological phases of a non-Hermitian coupled SSH ladder*

J S Liu; Y Z Han; C S Liu

<jats:p>We study topological phases of a non-Hermitian coupled Su–Schrieffer–Heeger (SSH) ladder. The model originates from the brick-wall lattices in the two-row limit. The Hamiltonian can be brought into block off-diagonal form and the winding number can be defined with the determine of the block off-diagonal matrix. We find the determine of the off-diagonal matrix has nothing to do with the interleg hopping of the ladder. So the topological phases of the model are the same as those of the chains. Further numerical simulations verify the analysis.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 100304

Interface properties and electronic structures of aromatic molecules with anhydride and thio-functional groups on Ag (111) and Au (111) substrates*

Wei-Qi Yu; Hong-Jun Xiao; Ge-Ming Wang

<jats:p>First-principles calculations for several aromatic molecules with anhydride and thio groups on Ag (111) and Au (111) reveal that the self-assembly structures and the interface properties are mainly determined by the functional groups of aromatic molecules. Detailed investigations of the electronic structures show that the electrons in molecular backbone are redistributed and charge transfer occurs through the bond between the metal and the functional groups after these molecules have been deposited on a metal substrate. The interaction between Ag (111) (or Au (111)) and aromatic molecules with anhydride functional groups strengthens the <jats:italic>π</jats:italic> bonds in the molecular backbone, while that between Ag (111) (or Au (111)) and aromatic molecules with sulfur weakens the <jats:italic>π</jats:italic> bonds. However, the intrinsic electronic structures of the molecules are mostly conserved. The large-sized aromatic backbone has less influence on the nature of electronic structures than the small-sized one, either at the interface or at the molecules. These results are useful to build the good metal–molecule contact in molecule-based devices.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 103101

Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study*

Kang Yang; Liang Yang; Chang-Zhi Ai; Zhao Wang; Shi-Wei Lin

<jats:p>The elastic properties of anatase nanotubes are investigated by molecular dynamics (MD) simulations. Youngʼs modulus, Poisson ratio, and shear modulus are calculated by transversely isotropic structure model. The calculated elastic constants of bulk rutile, anatase, and Youngʼs modulus of nanotube are in good agreement with experimental values, respectively, demonstrating that the Matsui and Akaogi (MA) potential function used in the simulation can accurately present the elastic properties of anatase titanium dioxide nanotubes. For single wall anatase titanium dioxide nanotube, the elastic moduli are shown to be sensitive to structural details such as the chirality and radius. For different chirality nanotubes with the same radius, the elastic constants are not proportional to the chiral angle. The elastic properties of the nanotubes with the chiral angle of 0° are worse than those of other chiral nanotubes. For nanotubes with the same chirality but different radii, the elastic constant, Youngʼs modulus, and shear modulus decrease as the radius increases. But there exist maximal values in a radius range of 10 nm–15 nm. Such information can not only provide a deep understanding of the influence of geometrical structure on nanotubes mechanical properties, but also present important guidance to optimize the composite behavior by using nanotubes as the addition.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 103102

Theoretical investigation of the pressure broadening D1 and D2 lines of cesium atoms colliding with ground-state helium atoms

Moussaoui Abdelaziz; Alioua Kamel; Allouche Abdul-rahman; Bouledroua Moncef

<jats:p>Full quantum mechanical calculations are performed to determine the broadening in the far wings of the cesium D<jats:sub>1</jats:sub> and D<jats:sub>2</jats:sub> line shapes arising from elastic collisions of Cs atom with inert helium atoms. The potential energy curves of the low-lying CsHe molecular states, as well as the related transition dipole moments, are carefully computed from <jats:italic>ab initio</jats:italic> methods based on state-averaged complete active space self-consistent field–multireference configuration interaction (SA-CASSCF–MRCI) calculations, involving the spin–orbit effect, and taking into account the Davidson and BSSE corrections. The absorption and emission reduced coefficients are determined in the temperature and wavelength ranges of 323–3000 K and 800–1000 nm, respectively. Both profiles of the absorption and the emission are dominated by the free–free transitions, and exhibit a satellite peak in the blue wing near the wavelength 825 nm, attributed to <jats:inline-formula> <jats:tex-math><?CDATA ${{\rm{B}}}^{2}{{\rm{\Sigma }}}_{1/2}^{+}\longrightarrow {{\rm{X}}}^{2}{{\rm{\Sigma }}}_{1/2}^{+}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msup> <mml:mrow> <mml:mi mathvariant="normal">B</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:msubsup> <mml:mrow> <mml:mi mathvariant="normal">Σ</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo stretchy="false">/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> </mml:mrow> </mml:msubsup> <mml:mo>⟶</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant="normal">X</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:msubsup> <mml:mrow> <mml:mi mathvariant="normal">Σ</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo stretchy="false">/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_10_103103_ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> transitions. The results are in good agreement with previous experimental and theoretical works.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 103103

Cluster structure prediction via CALYPSO method*

Yonghong Tian; Weiguo Sun; Bole Chen; Yuanyuan Jin; Cheng Lu

<jats:p>Cluster science as a bridge linking atomic molecular physics and condensed matter inspired the nanomaterials development in the past decades, ranging from the single-atom catalysis to ligand-protected noble metal clusters. The corresponding studies not only have been restricted to the search for the geometrical structures of clusters, but also have promoted the development of cluster-assembled materials as the building blocks. The CALYPSO cluster prediction method combined with other computational techniques have significantly stimulated the development of the cluster-based nanomaterials. In this review, we will summarize some good cases of cluster structure by CALYPSO method, which have also been successfully identified by the photoelectron spectra experiments. Beginning with the alkali-metal clusters, which serve as benchmarks, a series of studies are performed on the size-dependent elemental clusters which possess relatively high stability and interesting chemical physical properties. Special attentions are paid to the boron-based clusters because of their promising applications. The NbSi<jats:sub>12</jats:sub> and BeB<jats:sub>16</jats:sub> clusters, for example, are two classic representatives of the silicon- and boron-based clusters, which can be viewed as building blocks of nanotubes and borophene. This review offers a detailed description of the structural evolutions and electronic properties of medium-sized pure and doped clusters, which will advance fundamental knowledge of cluster-based nanomaterials and provide valuable information for further theoretical and experimental studies.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 103104