Catálogo de publicaciones - libros

Compartir en
redes sociales


Discovery Science: 10th International Conference, DS 2007 Sendai, Japan, October 1-4, 2007. Proceedings

Vincent Corruble ; Masayuki Takeda ; Einoshin Suzuki (eds.)

En conferencia: 10º International Conference on Discovery Science (DS) . Sendai, Japan . October 1, 2007 - October 4, 2007

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Philosophy of Science; Artificial Intelligence (incl. Robotics); Database Management; Information Storage and Retrieval; Computer Appl. in Administrative Data Processing; Computer Appl. in Social and Behavioral Sciences

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-75487-9

ISBN electrónico

978-3-540-75488-6

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2007

Tabla de contenidos

Mining Subtrees with Frequent Occurrence of Similar Subtrees

Hisashi Tosaka; Atsuyoshi Nakamura; Mineichi Kudo

We study a novel problem of mining subtrees with frequent occurrence of similar subtrees, and propose an algorithm for this problem. In our problem setting, frequency of a subtree is counted not only for equivalent subtrees but also for similar subtrees. According to our experiment using tag trees of web pages, this problem can be solved fast enough for practical use. An encouraging result was obtained in a preliminary experiment for data record extraction from web pages using our mining method.

- Regular Papers | Pp. 286-290

Semantic Based Real-Time Clustering for PubMed Literatures

Ruey-Ling Yeh; Ching Liu; Ben-Chang Shia; I-Jen Chiang; Wen-Wen Yang; Hsiang-Chun Tsai

This paper addresses to use the latent semantic topology to real-time cluster the literatures retrieved by PubMed in response to clinical queries and evaluates its performance by professional experts. The result shows that semantic clusters properly offer an exploratory view on the returned search results, which saves users’ time to understand them. Besides, most experts conceive that the documents assigned to the identical cluster are similar and the concepts of clusters are appropriate.

- Regular Papers | Pp. 291-295