Catálogo de publicaciones - libros

Compartir en
redes sociales


Learning Classifier Systems: International Workshops, IWLCS 2003-2005, Revised Selected Papers

Tim Kovacs ; Xavier Llorà ; Keiki Takadama ; Pier Luca Lanzi ; Wolfgang Stolzmann ; Stewart W. Wilson (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Artificial Intelligence (incl. Robotics); Computation by Abstract Devices; Mathematical Logic and Formal Languages; Data Mining and Knowledge Discovery

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-71230-5

ISBN electrónico

978-3-540-71231-2

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2007

Tabla de contenidos

Using XCS to Describe Continuous-Valued Problem Spaces

David Wyatt; Larry Bull; Ian Parmee

Learning classifier systems have previously been shown to have some application in single-step tasks. This paper extends work in the area by applying the classifier system to progressively more complex multi-modal test environments, each with typical search space characteristics, convex/non-convex regions of high performance and complex interplay between variables. In particular, two test environments are used to investigate the effects of different degrees of feature sampling, parameter sensitivity, training set size and rule subsumption. Results show that XCSR is able to deduce the characteristics of such problem spaces to a suitable level of accuracy. This paper provides a foundation for the possible use of XCS as an exploratory tool that can provide information from conceptual design spaces enabling a designer to identify the best direction for further investigation as well as a better representation of their design problem through redefinition and reformulation of the design space.

IV - Application-Oriented Research and Tools | Pp. 308-332

The EpiXCS Workbench: A Tool for Experimentation and Visualization

John H. Holmes; Jennifer A. Sager

The EpiXCS Workbench is a knowledge discovery tool that provides the user with the capability for knowledge discovery and visualization in medical data. The foundation for the workbench is the XCS paradigm [1]. The workbench is designed to benefit both expert learning classifier systems (LCS) researchers and inexperienced end-users in a variety of domains, especially clinical, epidemiologic, and public health researchers. It was implemented in Microsoft Visual C++, Version 6.0, using the GNU Scientific Library, using the XCSlib class library developed by Lanzi [2]. EpiXCS is designed to run on Intel Pentium processor environments at 1.0GHz and higher. No special graphics or other co-processors are required.

IV - Application-Oriented Research and Tools | Pp. 333-344